Abstract
Background: With the continuous advancement of diagnostic methods, more and more early-stage Non-small cell lung cancer (NSCLC) patients are diagnosed. Although many scholars have devoted substantial efforts to investigate the pathogenesis and prognosis of NSCLC, its molecular mechanism is still not well explained.
Methods: We retrieved three gene datasets GSE10072, GSE19188 and GSE40791 from the Gene Expression Omnibus (GEO) database and screened and identified differentially expressed genes (DEGs). Then, we performed KEGG and GO functional enrichment analysis, survival analysis, risk analysis and prognosis analysis on the selected hub genes. We constructed a protein-protein interaction (PPI) network, and used the STRING database and Cytoscape software.
Results: The biological process analysis showed that these genes were mainly enriched in cell division and nuclear division. Survival analysis showed that the genes of CEP55 (centrosomal protein 55), NMU (neuromedin U), CAV1 (Caveolin 1), TBX3 (T-box transcription factor 3), FBLN1 (fibulin 1) and SYNM (synemin) may be involved in the development, invasion or metastasis of NSCLC (P<0.05, logFC>1). Prognostic analysis and independent prognostic analysis showed that the expression of these hub gene-related mRNAs was related to the prognostic risk of NSCLC. Risk analysis showed that the selected hub genes were closely related to the overall survival time of patients with NSCLC.
Conclusion: The DEGs and hub genes screened and identified in this study will help us to understand the molecular mechanisms of NSCLC, and CEP55 expression affects the survival and prognosis of patients with NSCLC, and participates in tumor immune response.