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Introduction

T hreatening stimuli evokes states of stress, anxiety or fear in 
animals. The level of anxiety exhibition is different in re-
sponse to different stimulators.1,2 In aversive condition, 

stress responses could result in individuals’ homeostatic mainte-
nance. Anxiety is a complex psychological state, which can be 

shown that 
stressful life condition could induce anxiety-like behavior.1,3–5 
Potential threat results in a risk assessment behavior, comprising 

of danger to enable a transition from the “anxiety/defense” pattern 
to the more “goal directed” “fear/defense” pattern.6,7 Walker, et al. 
(2003) revealed that this response system has both a slow onset 
and a slow offset. Also, they indicated that fear differs from anxi-
ety in its time course, in having a rapid onset and offset.8

Many brain regions and different neurotransmitters are involved 
in the development of anxiety.9 One of the most important neu-
rotransmitters involved in behavioral responses to naturally anx-
iogenic environmental stimuli is dopamine, which plays a criti-
cal role in anxiety and fear.10–12 Considering the involvement of 
dopaminergic system in the modulation of anxiety, the aim of this 
study is to review the participation of the dopaminergic system 
within many brain regions in the modulation of anxiety. 

The role of dopaminergic system in anxiety-like behavior
Anxiety can be considered even as a ‘‘normal’’ emotion and an 

adaptive component of the acute stress response under circum-
stances that threaten the integrity of the individual or can be a 
pathological state which disrupt the patient’s life.13,14 Experimen-
tal studies in animal models revealed that many brain regions 
acting in concert mediate the symptoms of anxiety, both nor-
mal and abnormal. However, some areas such as the hippocam-
pus,15,16 amygdala,17,18 septum,19,20 prefrontal cortex (PFC),21,22 and 
NAc,23,24 seem to be specially involved in anxiety-like behavior. 
Each of these regions has been related to the neurocircuitry of 
anxiety in humans.4,25 A various mechanisms and neurotransmit-
ter are involved in the regulation of anxious states.14 It has been 
suggested that dopaminergic systems have central roles in regula-
tion of anxiety-like behaviors.26–33 Dopamine is the main catechol-

and has been revealed that dopamine has a role in pathophysiol-
ogy of some mental disease including parkinson,34–36 schizophre-
nia,37–39 sleep-related disorders.40,41 Also dopamine is involved in 
the regulation of locomotor activity,42,43 cognition44,45 emotion,46,47 
positive reinforcement,48,49 food intake,50,51 endocrine regulation, 
cardiovascular function,52 catecholamine release, hormone secre-
tion,53,54 vascular tone, renal function,55,56 gastrointestinal motil-
ity,57 reward,58,59 learning,60–63 memory,64,65 pain,66,67 depression,68,69 
fear,29,70 and anxiety.71,72 Dopamine receptors were
on amino acid sequence homology and pharmacology.73,74 Five 

 
protein-coupled,75–78 and are categorized as belonging to one of 
the two classes nominated as D1-like (D1 and D5) or D2-like (D2, 
D3, and D4).77,79,80 D1-like receptors can excite adenylatecyclase 
activity and increase cyclic adenosine monophosphate (cAMP). 
Autoreceptors, which are D2-like, have been recognized on the 
presynaptic terminals of dopaminergic neurons. Conversely, D2-
like receptor activation either prevents or has no effect on cAMP 
levels.81,82 Despite their opposing actions on adenylatecyclase ac-
tivity, previous evidences have suggested that a synergistic inter-
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action between D1 and D2 receptors is needed for the expression 
of most dopaminergic-related behaviors.83–85 Alterations in dopa-
mine transmission occurs following exposure to a wide variety of 
acute stressors.79,86 It has been shown that both dopamine D1 and 
D2 receptors are important in mediating anxiety even it could be 
with different mechanism.10,87–89 It has been reported that dopa-
mine depletion would be the inducer of anxiety and depression-
like behaviours,72,90 while L-DOPA treatment could rebate these 
effects due to dopaminergic function modulation.90 Dopamine is 
metabolized to 3,4-dihydroxyphenylacetic acid (DOPAC) in the 
terminal of synapses and mitochondria via monoamine oxidase. 
The level of dopamine and its metabolites, including the DOPAC/
dopamine ratio (dopamine turnover) and MAO-A/B activity, are 
associated with anxiety-like behavior.89,91–93

Effect of dopamine neurons of various brain areas in anxiety-
like behavior

Two important populations of dopamine neurons are 1) some 
dopaminergic neurons in substantia nigra (SN), which project to 
the dorsal striatum, giving rise to the nigrostriatal system, and 
2) those in the VTA that project to limbic structures, mainly the 
ventral striatum [i.e., the NAc], and PFC, giving rise to meso-
limbic and mesocortical pathways (Figure 1).94 These systems are 
associated with different functions: the nigrostriatal system has 
a motor function, while the mesolimbic system has motivation 
and reward functions.62,94,95 The pattern of dopamine release in the 
striatum  
in the substantia nigra pars compacta (SNc) and ventral tegmental 
area (VTA).96 Moreover, different parts of the VTA/SN complex 
may have functional interactions, either via local connections or 
long-range feedback loops.97–100 Some studies have indicated that 
the mesolimbic and mesocortical dopaminergic system are in-
volved in mediating stress,88 fear,101 anxiety,79,102 motivated behav-
iors, various types of reward and cognitive processes.103 There are 
data showing that stress activates the mesolimbic dopamine sys-
tem,73,104 and an increase in dopamine level in the synaptic cleft, 
e.g. through inhibition of dopamine reuptake, which may induce 
anxiety-like behavioral effects.73,105,106 The striatum contains dense 
dopaminergic innervations.107 The dorsal striatum receives a ma-
jor dopaminergic afferent from the SNc,62 and the ventral striatum 
receives a major dopaminergic input from the VTA.108 Dopami-

nergic neurons in the striatum play a main role in processing of re-
ward,62 and motivation.108 In addition, the VTA is a main dopami-
nergic center in the brain, which projects dopaminergic pathways 
to several corticolimbic structures.45,109,110 Dopamine containing 
neurons in VTA are about 60%.111 Dopamine D1 receptors are ex-
pressed in moderate to low density in the VTA.112 These receptors 
have a key role in the functional interaction between the VTA and 
its target sites, such as forebrain structures.45,113 Furthermore the 
dopamine D2 receptors are highly expressed in the VTA of ro-
dents.112 Activation of the D2 autoreceptors leads to heighten po-
tassium conductance that hyperpolarizes the plasma membrane of 

114 The activation of D1 receptors located on 
the VTA dopaminergic neurons or non-dopaminergic nerve termi-
nals increases D2 receptor-mediated inhibition through inhibitory 
neurons.112 Some studies have shown that intra-VTA injection 
of D2 receptor antagonists, for example eticlopride or sulpiride, 
increase the extracellular dopamine in the VTA.45,115 These stud-
ies may suggest that somatodendritic dopamine D2 autoreceptors 
in the VTA tonically inhibit the dopaminergic mesocorticolim-
bic pathway activity.45 The VTA dopamine cells are activated in 
stressful condition10 and  anxiety,116 and release dopamine in the 
NAc,94 mPFC,117 amygdala,10 hippocampus,45 and olfactory tuber-
cule.94

Effect of dopamine neurons of the hippocampus in anxiety-like 
behavior

The hippocampus is the main part of the mesolimbic system 
that is involved in the modulation of fear and anxiety-related be-
haviors.118–122 The hippocampus is vastly interconnected with the 
septum, and has main connections with the locus coeruleus, ra-
phe nuclei, hypothalamus, amygdala and medial frontal cortex; 
regions that are involved in anxiety.79 It is well known that the 
dorsal hippocampus plays a vital role in the learning and memory 
of spatial tasks,123–125 while the ventral hippocampus is predomi-
nantly involved in the modulation of fear and anxiety.126 In fact, 
the ventral sub-region of the hippocampus differs from the dorsal 
part in its anatomical connections.127 The ventral hippocampus 
projects to the PFC, whereas the dorsal hippocampus does not.126 
Lesions of the ventral hippocampus induce anxiolytic-like effects 
similar to those observed after treatment with anxiolytic drugs in 
different animal models of anxiety.119

Figure 1. Schematic illustration of nigrostriatal, mesolimbic and mesocortical dopaminergic pathway. This pathway plays an important role in anxiety 
process.  The mesolimbic and mesocortical dopaminergic system 
are involved in mediating anxiety.
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The hippocampus receives dopamine projections from the me-
solimbic structures such as the VTA and SNc (Figure 2).45,117,128,129 
This phenomena seems to have a key role in the hippocampus 
plasticity.123 Dopamine D1 and D2 receptors of the dorsal hippo-
campus (CA1) and ventral hippocampus are involved in anxiety-
related behaviors.74,79,130

Effect of dopamine neurons in the amygdala in anxiety-like be-
havior

Amygdaloidal structure, which includes numerous sub-nuclei 
plays a main role in the integration and expression of anxiety,131–137 
stress,138 fear conditioning, and emotional memory.139 Structural 
changes in the basolateral amygdaloid (BLA) nucleus have been 
most implicated in anxiety situation. Stressful environment, el-
evated level of stress hormones and anxiety could lead to BLA 
nucleus hypertrophy, whereas experimental reduction of dendritic 
length results in decreased anxiety.140–142 The mesocorticolimbic 
dopamine system function and associated mood state is regulated 
by VTA dopaminergic neurons, which are controlled by central 
amygdaloid (CeA) nucleus projections.10,112 Several experimental 
investigations showed that the mesolimbic dopaminergic system 
has a critical role in amygdaloid modulation of fear and anxi-
ety.10,143 Under normal conditions, the activity of BLA nucleus is 
suppressed by the mPFC, but in stressful conditions, dopaminer-
gic neurotransmission relieves BLA nucleus from cortical inhibi-
tion and leads to the development of anxiety responses.10,144 Thus, 
this effect of dopamine decreases cortical inhibition and modu-
lates the relation between important regions involved in anxiety in 
amygdala including BLA and CeA nuclei, which are central input 
and output station of amygdala.10,87,112

The amygdala is innervated by dopamine neurons originating 
from the VTA.50 Anxiety, fear and other stressors can activate the 
VTA-derived dopaminergic pathways to the amygdala and adja-
cent bed nucleus of the stria terminals (BNST).88 In mammals, 
dopamine receptor-mediated mechanisms play a critical role in 
the amygdaloid modulation of fear and anxiety.10,12,143 Different 
kinds of dopamine receptors, which exit in the rats’ amygdala are 
involved in anxiety modulation (Table 1).10,101 Some evidences 

indicated that the intra amygdala D1 receptor activation or its 
blockade could cause either anxiogenic or anxiolytic effects in 
conditioned and unconditioned tests of anxiety.10,18,87,145 Behavior-
ally, the intra-amygdala injection of dopamine D1-like receptor 
agonists and antagonists elicits anxiogenic and anxiolytic effects 
respectively on models of anxiety suggesting an anxiogenic role 
for D1 receptors in amygdala.18,146 Furthermore, the amygdaloid 
dopamine D2 receptors play a vital role in the modulation of anxi-
ety. The amygdaloid dopamine D2-like receptors are express in 
CeA nucleus of amygdala and have been suggested to be involved 
in anxiety-like behavior via VTA and BLA connecting modula-
tions.10,87,147 The Dopaminergic transmission (of unknown origin) 
in the vestibular nuclei and mesolimbic dopaminergic projections 
to the CeA nucleus and infralimbic are potential substrates for the 

vestibular function and anxiety.12,148

Effect of dopamine neurons in the septum in anxiety-like be-
havior

The septum is a region of the basal forebrain,149 and plays an im-
portant role in anxiety,16,150 fear, stress, emotions, aggression, and 
motivation.151 The septum usually increases anxiety.16 The septal 
region is compassed of two parts (lateral and medial septum) with 
different innervation and function.19,152–155 Some studies indicate 
that the lateral septum enhances its neural activity when animals 
are submitted to a variety of stressful stimuli. Additionally, the 
lateral septum contains axon terminals and expresses receptors 
for different neurotransmitters/neuromodulators implicated with 
anxiety.150 Several evidences indicated that lesion of the lateral 
septum produces anxiolytic effects.151,156,157 In addition, the medial 
septum may play an important role in the regulation of anxiety.16

The VTA dopamine innervations to septum contact to perikarya 
and inhibi-

tory postsynaptic responses.123,158 
increased the septal dopamine levels, implicating a role for do-
pamine in sensory-related processing associated with the septal 
complex.158–160

Figure 2. Schematic representation of the sites of actions of nigrostriatal, mesolimbic and mesocortical dopaminergic pathway. Nigrostriatal, mesolimbic 

release in target structures such as the striatum and PFC.
prefrontal cortex.
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Effect of dopamine neurons of the medial prefrontal cortex 
(mPFC) in anxiety-like behavior  

The mPFC of rodents is subdivided into anterior cingulate, pre-
central, prelimbic, infralimbic and medial orbital cortices.22 These 
areas are involved in the control of emotional responses, and 
sending projections to various brain regions related to the expres-
sion of fear and anxiety.161,162 The PFC and mesocorticolimbic do-
paminergic pathway originate from the VTA.109,147,163–165 The PFC 
dopaminergic system involved in anxiety-related behavioral via 
D1 or D2 activity, pharmacological stimulation or inhibition of 
dopamine receptors in the mPFC change anxiety-like state.166–169

Effect of dopamine neurons of the nucleus accumbens (NAc) in 
anxiety-like behavior

One of the major parts of ventral striatum and mesolimbic sys-
tem is NAc.23,94,170 The NAc is involved in motivation, reinforce-
ment, defensive behavior, cognition, motor activity, sexual behav-
ior, stress, fear and anxiety. The NAc has heterogeneous structure 
consist of the shell and core. The shell has a role in limbic and 
motor cortex connection. This connection could explain the in-
volvement of shell in defensive behavioral responses to threaten-
ing stimuli.24 Some neurotransmitter systems of the NAc may be 

involved in anxiety-related behavior.23 The NAc received dopami-
nergic neurons from the VTA.108,109,170,171 As medial and posterior 
sections of the VTA project to the medial portion of the ventral 
striatum (i.e. ‘shell’ of the NAc), whereas anterior and lateral 
parts of the VTA innervate the most lateral portions of the ventral 
striatum (i.e. the ‘core’ of the NAc).94,172 The NAc can change the 
activity of VTA dopaminergic system via direct or indirect path-
ways. In a direct way, spiny 
VTA and in an indirect way ventral pallidum is involved. It has 
been shown that there is a stressful environment that could in-
creases dopamine in NAc.112,152,173 Stress has also been shown  to 
reorganize may 
be relevant to altered motivational states characteristic of anxiety 
disorders.4,174

The balance between excitatory and inhibitory inputs and innate 
 dopamine release 

of VTA in purposed regions.117,175 The principle excitatory inputs 
 from the 

mPFC,62,117,176 whereas the major inhibitory inputs are GABAer-

Drug Action Animal model Species 
(strain) Site of injectionDose range Effect Reference

SKF38393 D1 agonist Elevated plus maze Rat BLA 0.25 μg/rat Anxiogenic 88

SKF38393 D1 agonist Head dips Mouse Hippocampus Anxiogenic 79

Apomorphine D1/D2 receptor agonist Elevated plus maze Rat Amygdala Anxiolytic 212

Apomorphine D1/D2 receptor agonist Elevated plus maze Rat Hippocampus 0.1 and 0.2 μg/rat Anxiogenic 74

SCH23390 D1 antagonist Elevated plus maze Rat BLA 0.5 and 1 μg/rat Anxiolytic 88

SCH23390 D1 antagonist Elevated plus maze Rat VTA Anxiolytic 112

SCH23390 D1 antagonist Elevated plus maze Rat NAc Anxiolytic 194

SCH23390 D1 antagonist Elevated plus maze Rat BLA Anxiolytic 144

SCH 23390 D1 antagonist Fear conditioning Rat BLA 1 and 2 μg/0.2 μL Not effect 147

SCH23390 D1 receptor antagonist Elevated plus maze Rat Hippocampus 0.01, 0.1 and 1μg/rat Not effect 74

SCH23390 D1 antagonist Elevated plus maze Rat Hippocampus Not effect 102

SCH23390 D1 antagonist Head dips Mouse Hippocampus Anxiogenic 79

SCH23390 D1 antagonist Elevated plus maze Rat Amygdala Anxiogenic 212

Quinpirole D2 agonist Fear conditioning test Rats VTA 1 μg/0.2 μL Anxiolytic 147

Quinpirole D2 receptor agonist Head dips Mouse Hippocampus Anxiogenic 79

Quinpirole D2 receptor agonist Elevated plus maze Rat BLA 0.03 and 0.05 μg/rat Anxiogenic 88

Sulpiride D2 antagonist Fear conditioning Rat BLA 1 and 2 μg/0.2 μL Anxiolytic 147

Sulpiride D2 receptor antagonist Elevated plus maze Rat BLA Anxiolytic 144

Sulpiride D2 receptor antagonist Elevated plus maze Rat BLA 0.3 and 0.5 μg/rat Anxiolytic 88

Sulpiride D2 receptor antagonist Head dips Mouse Hippocampus Not effect 79

Sulpiride D2 receptor antagonist Elevated plus maze Rat NAc Not effect 194

Sulpiride D2 receptor antagonist Elevated plus maze Rat Hippocampus Not effect 102

Sulpiride D2 receptor antagonist Elevated plus maze Rat VTA Not effect 112

Sulpiride D2 receptor antagonist Elevated plus maze Rat Hippocampus 1, 2.5 and 5μg/rat Not effect 74

Sulpiride D2 receptor antagonist Elevated plus maze Rat Amygdala Anxiogenic 212

Raclopride D2 receptor antagonist Fear-potentiated startle Rat BLA 2.0–8 μg/side Anxiolytic 10

Raclopride D2 receptor antagonist Shock-Probe Burying test Rat CeA 0.73, 2.4 μg/side Anxiogenic 10

Eticlopride D2 receptor antagonist Conditioned freezing Rat CeA 1 μg/side Anxiolytic 10

Table 1. 
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gic, including local interneurons and projections from the NAc 
and the ventral pallidum.177–181 Glutamatergic inputs activate 
AMPA- and NMDA-type ionotropic glutamate receptors in the 
dopamine cells. Agonist of AMPA and NMDA receptors could 

 dopaminergic neurons. In addition, block-
age of NMDA receptor could inhibit
by electrical stimulation of glutamatergic afferents or applica-
tion of ionotropic glutamate/aspartate.182 Glutamate also acti-
vates metabotropic glutamate receptors (mGluRs), mainly type 1 
mGluR (mGluR1), in the dopamine neurons. On the other hand, 
dopamine inhibits glutamate release and facilitates GABA release 
onto the dopamine neurons via activation of presynaptic D2 and 
D1 receptors, respectively.62 Pedunculopontine nucleus (located 
in upper brainstem), and laterodorsal tegmental nucleus (located 
caudal to pedunculopontine nucleus) project and release acetyl-
choline to VTA. Cholinergic innervations induced dopamine re-
lease from VTA to NAc.117,183 It has been shown that the release 
of glutamate with acetylcholine
patterns of activity in the dopaminergic neurons of the VTA.117,184 
Serotonergic system through serotonin (5-HT) receptor subtypes 
including 5-HT2A and 5-HT2C receptors modulates cortical do-
pamine activity. Stimulatory action of nicotine on the midbrain 
dopamine function could block by 5-HT2C receptor agonists. 
It has been reported that the level of extracellular dopamine in 
the accumbens shell and mPFC increased after 5-HT6 receptor 
agonist administration, which indicated the modulation effect of 
5-HT6 receptors on dopamine transmission in the mesolimbic and 
mesocortical terminals.112,185–189

The interaction between glutamatergic and dopaminergic sys-
tems in central nervous system (CAN) may be important in the 
modulation of anxiety-related behaviors (Table 2).102,190 For in-
stance, some study exhibited that NMDA receptor signaling in 
dopaminergic neurons of the VTA,32 and CA1,102 plays a key role 
in anxiety-like behaviors. A subcellular cross-talking between 
the dopaminergic and glutamatergic systems has been proven in 
terms of molecular assemblies: receptors of both systems tend 
to colocalize and NMDA transmission is increased when dopa-
mine D1 is co-expressed.57 The glutamatergic afferents activate 
ionotropic and metabotropic glutamate receptors in the dopamine 
cells.62 Expression of the metabotropic glutamate receptor is high 
in the brain areas receiving dopaminergic inputs.191 It has been 
revealed that metabotropic glutamatergic receptors interact with 
the dopaminergic and ionotropic glutamatergic interplay through 
the inhibition of a kinase, which is activated by dopamine recep-
tor D1 that, in turn, activates AMPA receptors, providing a second 
mechanism of inhibition for excessive activation. It is interesting 
to note what happens within the glutamatergic system. It has been 
reported that after stimulating dopamine D1 receptors, the AM-
PARs and NMDARs undergo a different metabolic path, suggest-
ing that a regulation takes place. It specially regulates the fate of 
different actors of the glutamatergic system.57 Both in vivo and 
in vitro studies indicated that dopamine neurons
by glutamatergic inputs can decreased by AMPA receptor antago-
nists.192

In particular, dopamine D1 manipulation results into a
-

gions of the neuronal cell, although the AMPA and metabotropic 

glutamatergic receptors were found to be unchanged in their phos-
phorylation state after dopamine D1 experimental challenge. The 
PSD-95 has been shown to be the scaffolding proteins that control 
the relationship between the D1 and NMDA receptors.193 Under 
physiological conditions, PSD-95 uncouples dopamine D1 and 
NMDA allowing the internalization of NMDA, which interrupts 
the glutamatergic signal.57

-

The regulation of dopamine release by acetylcholine may modu-
late anxiety-like behavior in mice.79 Some evidences demonstrat-
ed the involvement of dopamine transmission through D1 and D2 
receptors of the NAc shell,194 dorsal,79 and ventral hippocampus,74 
in the anxiogenic-like effect of nicotine. Cholinergic inputs of 
laterodorsal tegmental nucleus control the pattern of dopamine 

94 The dopamine neurons generally exhibit excitatory 
responses to acetylcholine via activation of nicotinic,94,96 and mus-
carinic acetylcholine receptors.62 It is suggested that dopamine 
is involved in anxiogenic-like effect of nicotine. As dopamine 
neurons express different subtypes of nicotinic acetylcholine re-
ceptors (nAChRs), stimulation of postsynaptic M5 muscarinic 
acetylcholine receptors activitate dopamine neurons.62,94 Some 
studies indicated that dopamine is released by nicotine,195 induces 
anxiety-like behavior,196 which is reduced via blockade of the D1 
and D2 receptors by dopamine antagonists.74,79 Zarrindast, et al. 
(2010), showed that systemic injection of apomorphine is able to 
induce anxiolytic-like effect in elevated plus maze, through D2 
receptor subtype. The possibility may exist that apomorphine acts 
on presynaptic D2 receptors and in turn decreases dopamine re-
lease through nicotine.74 Thus, dopamine post-synaptic receptor 
activation should be involved in the anxiogenic-like behavior of 
nicotine.74,79

-

It has been reported that GABAergic system is participated in 
modulation of anxiety-like behavior via interacting with other 
neurotransmitter systems such as opioidergic and dopaminergic 

-
pocampus, NAc and CeA nucleus.23,101,197 A large number of syn-
apses onto dopaminergic neurons of SNc are GABAergic, so it is 
suggested that GABA strongly inhibits the activity of dopamine 
neurons.198 In VTA, the inhibition effect of GABA is lower than 
SNc. NAc/striatum and the ventral pallidum/globuspallidus (ex-
ternal segment) have a GABAergic feedback projections into 
the VTA/SNc.62,177,178 Recent evidence employing an optogenetic 
approach indicates that the GABAergic feedback from the NAc/
striatum projects more densely to non-dopamine neurons.173,199 
The dopamine neurons also receive GABAergic inputs from local 
GABA neurons within the VTA,200 or from substantia nigra pars 
reticulata (SNr).179 Both GABAA and GABAB receptors mediate 
the inhibitory action of GABA on the dopamine cells.200 It has 
been reported that dopaminergic activity of nigrostriatal neurons 
are increased by GABAA receptors activity, while mesolimbic 
dopaminergic neurons’ activity decrease in consequences of GA-
BAB receptors stimulation. GABAB receptor-mediated inhibition 
is achieved by activation of G protein-gated inwardly rectifying 
K+ (GIRK) channels.201 GABA release onto the dopamine neu-
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rons can be inhibited through both GABAA and GABAB recep-
-

rons.180,198,202–204

The tail of the VTA (tVTA), also named the rostromedial teg-

that considered to send a GABAergic input on the dopamine sys-
tems.203,205,206 Anatomical properties of tVTA, make it suitable for 
conveying different kinds of signals to dopamine neurons and 
participate in behavioral responses.206 Also, there is a putative 

nucleus. It is known that the amygdala is under a powerful GAB-
Aergic control of the mPFC. Dopamine D1 and D2 receptors in 
the CeA and BLA nuclei attenuate the mPFC inhibition in dopa-
minergic activity by unknown mechanism.10

-

Cannabinoids may interact with several neurotransmitter sys-
tems; such as the dopaminergic system.128 The CB1 receptor 
stimulation might prevent the release of different neurotransmit-
ters (dopamine, norepinephrine, and serotonin) involved in trig-
gering stress induced response, thus reduce it.207,208 Cannabinoids 
modulate monoamine synthesis and release dopamine by the ac-
tivation of CB1 receptors.128,209 Neurons expressing dopamine D1 
receptors also express cannabinoid CB1 receptors but the exact 
roles of them in behavior is not understood yet.86 In the central 
nervous system, endogenous cannabinoids compounds activate 
cannabinoid CB1 receptors, which are located pre-synaptically in 
several brain regions such as PFC, hippocampus, amygdala, basal 
ganglia and VTA.86,94,210,211A dopaminergic and endocannabinoid 
interactions in different parts of the brain like amygdala, NAc and 
striatum are involved in different behavioral responses.86 It has 
been suggested that D1 and D2 dopaminergic receptors’ activities 
are involved in the anxiety induction.212

-

Morphine-induced anxiolytic-like effects may be mediated by 
interacting with other neurotransmitter systems such as GABAer-

-
ing the ventral hippocampus, NAc and CeA nucleus.23,101,197 Mor-
phine blocks inhibitory effect of GABA on VTA dopaminergic ac-
tivity, thus increases dopamine release.101,213 Rezayof, et al. (2009) 
reported that the CeA nucleus dopaminergic mechanisms, possi-
bly via D1/D2 receptors, might be involved in the modulation of 
morphine-induced anxiolytic-like behavior in rats.101 Opioids can 
increase dopaminergic transmission to the NAc by inhibiting the 
GABAergic interneurons in the VTA.214,215 Chronic administra-
tion of opiates decrease the size of dopaminergic neurons of VTA 
and subsequence dopamine release while, increase volatility of 
neurons.216 In vivo studies in morphine-dependent rats indicated 
that opiates hyperpolarize local GABA interneurons and decrease 
inhibitory effect of GABAergic synapses on the VTA dopamine 
neurons.216, 217

-
ceptor signaling.213

Histaminergic system has been shown to be involved in the 

modulation of anxiety-like behaviors. It has been indicated that 
various stressful situations increase the turnover of histamine in 
the rodent brain.88 The amygdala receives histaminergic afferents 
derived from the tuberomammillary nucleus of the hypothala-
mus.218 BLA nucleus has a lot of histamine H1, H2 and H3 recep-
tors.88,219 In their study, Bananej, et al. (2012) showed that the do-
pamine D1 and D2 receptors in the BLA nucleus may be involved 
in the anxiogenic-like effects induced by histamine.88

In conclusion, several studies have assessed the involvement of 
dopamine receptor mechanism in anxiolytic-like and anxiogenic-
like behaviors in animal models.102 This review was an attempt to 
explore the role of dopamine receptors in modulation of anxiety.

Several evidences show that dopaminergic system in the VTA,116 
NAc,152 mesolimbic,104 amygdala,10,12,143 and hippocampus,79 play 
a critical role in the modulation of anxiety-like behavior. Anxiety-
like behavior are accompanied by alterations in mesolimbic dopa-
mine function,220 such as increase in dopamine level and its me-
tabolite, enhancement of dopamine responses to cues and psycho-

Some evidences suggest that dopaminergic mechanisms in the 
mesolimbic circuit comprising the VTA, NAc, and amygdala are 
novel targets for the pharmacological treatment of anxiety.147,221,222

It seems that the cholinergic and dopaminergic receptors interact 
with each other to regulate the anxiety-related behaviors of rats in 
the VTA,112 NAc,194 hippocampus,74 CeA,112 and BLA nuclei.144 It 
has been revealed that nicotine modulates anxiety by induction 
of VTA dopamine neurons activity.223,224 Zarrindast, et al. (2012) 
suggested that nicotine-evoked anxiety-induced by nicotine may 
be mediated via the activation of D1 and D2 dopamine recep-
tors in the NAc.194 Some studies indicated that NMDA receptor 
signaling in the dopaminergic neurons of the VTA plays a pivotal 
role in anxiety-like behaviors.32,102 The existence of D2 receptors 
in glutamatergic nerve terminals of VTA and BLA suggested that 
dopamine controls the activity of VTA dopaminergic neurons in 
these two regions.112 There are glutamatergic projections from the 
BLA nucleus to the NAc.194,225 Several investigators reported that 
hippocampus NMDA and dopamine D1 but not D2 receptors are 
involved in the expression of anxiety-like behaviors.79,102,226–229 
Moreover, it has been shown that CB1 receptor signaling through 
either post- or pre-synaptic mechanisms regulate dopaminergic 
pathways directly or indirectly.94,211,230–232 Interestingly, the exis-
tence of both CB1 and D1 receptors in  same sites shows that they 
may have synergic function in behavior and other responses.86 It 
has been shown that the endocannabinoid system is a relevant 
negative modulator of the behaviors, which are mediated by do-
paminergic systems.128,233 Some researches revealed that the dopami-
nergic mechanism in the CeA nucleus may be involved in mediating 
morphine-induced anxiolytic-like effects. Rezayof, et al. (2009) re-
ported that the blockade of the dopamine D1 receptors of the CeA 
nucleus inhibited morphine induced anxiolytic-like effect. They 
suggested that dopaminergic system of the CeA nucleus, through 
both dopamine D1 and D2 receptors, may be involved in media-
tion of morphine-induced anxiolytic-like effects.101 Furthermore, 

A or GABAB receptors,180,203,204 
serotonergic neurons through the 5-HT2 and 5-HT6 receptors,112 
and histaminergic cells by H receptors,88 contribute with dopa-
mine neurons in modulation of anxiety behavior. Therefore, it can 
be suggested that interaction of dopamine neurons with choliner-
gic, glutamatergic systems and etc. in different parts of brain may 
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