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The elastic net penalized Cox proportional hazards regression algorithm 
Let we have data of the form �Tj, 𝒛𝒛j, εj�, j = 1, 2, … , n where Tj (the observed survival time) is a 
time of right-censoring if εj is 0 or event if εj is 1. As in conventional multiple regression, 𝒛𝒛j is a 
vector of potential covariates (zj1, zj2, … , zjS). We further suppose t1<t2<…<tp to be the 
increasing sequence of unique event times, and i(j) shows the index of the observation failing at 
time tj. The standard Cox proportional hazards (PH) regression assumes a semi-parametric form 
for the hazard: 
hj(t)=h0(t)×𝑒𝑒∑ αizji

S
i=1 =h0(t)×𝑒𝑒zj

Tα                                                                                                   (1) 
where hj(t) is the hazard function for subject j at the time of t, h0(t) is a baseline hazard function, 
and 𝛂𝛂 = (α1,α2, … ,αS) is a fixed, length S vector. Inference is then made through the partial 
likelihood function 

L(𝛂𝛂) = ∏ 𝑒𝑒𝐳𝐳i(j)
T 𝛂𝛂

∑ 𝑒𝑒∑ αizji
S
i=1i∈Rj

𝑝𝑝
𝑗𝑗=1                                                                                                                          (2).               

Here, 𝑅𝑅𝑗𝑗 is the set of indices, i, with Ti≥tj (subjects at risk at the time of tj). By maximizing the 
partial log-likelihood function, one can estimate 𝛂𝛂 (1-4). 
For classical cases, with many more patients than candidate covariates, the unpenalized Cox PH 
regression performs well.  However, for small sample size data, if the number of the candidate 
covariates is relatively large, the number of the outcome events per candidate covariate tends to 
be less than expected and using conventional Cox PH regression can be misleading (5). In such 
cases, using penalized Cox-adjusted regressions as machine learning algorithms is the best option. 
These penalized methods solve this problem by adding a penalty term to the log-likelihood 
function. The penalization procedures such as elastic net and LASSO are popularly utilized for 
variable selection in the machine learning domain. The elastic net regression is a combination of 
the LASSO and ridge regressions (3, 5, 6). The elastic net penalized Cox-adjusted likelihood 
function is defined as 

L(α)=�
𝑒𝑒𝐳𝐳i(j)

T 𝛂𝛂

∑ 𝑒𝑒∑ αizji
S
i=1i∈Rj

 +
p

j=1

Pelastic net(α, w, λ)                                                                                (3)  

where  
Pelastic net(α, w, λ)=∑ λS

i=1 (w|αi|+
1
2

(1-w)αj
2)                                                                             (4)  

 is the penalty term that penalized the estimates (λ≥0 and w∈[0, 1]) (3, 6). The elastic net simplifies 
to simple ridge regularization when w=0, and to the LASSO regularization when w=1 (6). 
Furthermore, when λ=0, the penalty term is eliminated and it reduces to the ordinary partial 
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likelihood function. As λ increases, however, more and more model parameters shrink to 0. The 
trick is to specify the optimal values of the regularization parameters w and λ.  
In practice, for any pre-specified w value, the optimal value of λ is determined according to the 
common fitness measures such as Bayes’ information criterion, Akaike’s information criterion, 
and cross validation (3). In this study, we considered the following sequence of w parameter: w=0, 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. For each w, we used the cross-validated partial log-
likelihood deviance to select the appropriate regularization parameter λ so the smallest value of 
deviance is preferred (3, 6). The cyclical coordinate descent algorithm was utilized for maximizing 
the partial log-likelihood with the elastic net penalty (7). The “glmnet” R package (version 3.0-2) 
was used for training the elastic net penalized Cox-adjusted regression model (3). 
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