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Introduction
Cervical cancer ranks as the second most prevalent 
cancer among women globally.1 The onset of this cancer 
is closely linked to persistent infection with the human 
papillomavirus (HPV).2 Approximately 120 HPV types 
have been identified to date, which are classified based 
on their oncogenic potential into high-risk and low-
risk categories. The high-risk types, such as HPV16 and 
HPV18, are more likely to cause cancer, while the low-
risk types, including HPV6, HPV11, and HPV40, are less 
likely to lead to malignant transformation.2,3 Globally, 
HPV16 is responsible for approximately 57% of cervical 
cancer cases, with HPV18 contributing to around 16%. 
However, the prevalence of specific HPV types in cervical 
cancer varies across different regions.4

Interestingly, not all HPV infections lead to cervical 
cancer. Research has shown that nearly 90% of HPV 
infections clear up on their own within two years.5 
However, the reasons behind the resolution of HPV 
infections in some cases and the persistence in others 
remain unclear. Individual susceptibility factors may 
contribute to the varying outcomes of HPV infections.6

Currently, surgical procedures like conization or loop 
electrosurgical excision are the primary treatments for 
patients with pre-cancerous lesions or early-stage cervical 
cancer.7,8 These methods aim to remove abnormal tissue 
and prevent further progression of the disease. However, 
there is still a critical need for improved diagnostic 
approaches that can facilitate early detection and provide 
a better understanding of the molecular basis of the 
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Abstract
Background: Cervical cancer is the leading malignancy among women worldwide, posing clinical and public health challenges. 
This in silico study aims to identify potential diagnostic biomarkers, therapeutic targets, and prognostic markers associated with 
cervical cancer through integrative bioinformatics approaches. 
Methods: A hybrid machine learning approach, combining genetic algorithm (GA) and support vector machine (SVM), was applied 
to high-dimensional gene expression data from publicly available transcriptomic datasets, including the Gene Expression Omnibus 
(GEO) and The Cancer Genome Atlas (TCGA). A total of 72 Geo samples (Affymetrix, Illumina) served as the primary dataset after 
normalization. 
Results: The GA-SVM model achieved about 99% accuracy and AUC with 10-fold cross validation, clearly separating cervical 
cancer from normal tissues. Eight genes (CXCL9, CTGF, ZNF704, ZEB2, SASH1, PTN, KPNA2, SLC5A1) were identified as 
diagnostic biomarkers. Protein-protein interaction (PPI) and functional enrichment analyses revealed 42 therapeutic targets (e.g. 
CDK1, BRCA1, CCNB1, and AURKB) linked to regulating cell cycle, DNA repair, and mitotic processes. Survival analysis identified 
six genes (CXCL1, DNMT1, MMP1, MYBL2, PCNA, and RRM2) as key prognostic markers. Additionally, transcription factor 
analysis identified E2F1 and TP63 as major regulators of the prognostic genes, elucidating the molecular mechanisms underlying 
cervical cancer progression.
Conclusion: The identified gene signatures may serve as candidates for hypothesis generation and provide a computational 
framework to prioritize biomarkers and therapeutic targets in cervical cancer. However, these findings are based on in silico 
analyses and require experimental and clinical validation before translation into practice.
Keywords: Biomarkers, Cervix neoplasm, Genetic algorithm, Gene expression, Support vector machine
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disease.
Recent advancements in bioinformatics tools have 

facilitated large-scale analysis of transcriptomic data, 
enabling systematic biomarker discovery in cervical 
and other cancers.9-12 Most previous studies relied on 
conventional approaches such as statistical tests or 
single-classifier machine learning models for gene 
selection and diagnosis.13,14 However, these traditional 
methods, including t-test, fold-change analysis, and 
univariate regression, may overlook complex, non-linear 
relationships in gene expression data, limiting their 
diagnostic potential.15,16 To address these limitations, 
more sophisticated machine learning models including 
support vector machines (SVMs), random forests, and 
other classifiers have been applied to high-dimensional 
datasets.17-19 Among these, hybrid metaheuristic-ML 
approaches such as genetic algorithms (GA) combined 
with SVM have demonstrated improved effectiveness 
for feature selection and classification tasks, enabling 
more comprehensive exploration of feature space and 
identification of informative biomarkers.11,20 

Nevertheless, the use of such hybrid methods in cervical 
cancer studies is still limited, and many published works 
do not integrate these approaches with downstream 
functional analyses, such as protein-protein interaction 
(PPI) network construction and enrichment assessment.

The primary objective of this study is to identify novel 
key genes that can be used as biomarkers for cervical 
cancer diagnosis by utilizing a hybrid GA-SVM approach. 
By employing these advanced machine learning 
techniques, the study aims to (1) enhance early detection 
accuracy and offer new insight into the genetic pathways 
involved in cervical cancer, (2) evaluate the diagnostic 
accuracy of GA-SVM in distinguishing tumor from 
normal samples (3) identify potential therapeutic targets 
through PPI network and enrichment analyses, and (4) 
determine prognostic markers using survival analysis by 
Gene Expression Profiling Interactive Analysis (GEPIA) 
platform. Ultimately, this approach could lead to more 
effective screening and personalized treatment strategies 
for individuals at risk of developing cervical cancer.

Materials and Methods
Study Design, Data Acquisition, and Preprocessing
We performed a comprehensive search of the Gene 
Expression Omnibus (GEO) database using the keyword 
“Cervical cancer” to identify pertinent datasets. The 
selection criteria were: (1) inclusion of primary cervical 
cancer and normal samples; (2) each group comprising 
over 20 samples; and (3) datasets encompassing more than 
10,000 genes. Consequently, three microarray datasets 
GSE29570, GSE7410, and GSE52903 were incorporated 
into this study. 

Among them, GSE52903, containing 55 cervical tumor 
samples and 17 exocervical control samples, was used as 
the main dataset, while GSE29570 (45 tumor, 17 normal) 
and GSE7410 (40 tumor, 5 normal) served as validation 

datasets. These datasets can be accessed at the NCBI GEO 
via the following link: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi. 

To further validate our findings, we utilized the GEPIA 
web server, which provides access to RNA sequencing 
expression data from The Cancer Genome Atlas (TCGA) 
and the Genotype-Tissue Expression (GTEx) projects.21 
Specifically, we analyzed the cervical squamous cell 
carcinoma and endocervical adenocarcinoma (CESC) 
dataset from TCGA, comprising 306 tumor and 13 
normal samples.22

For each platform, we retrieved the raw data 
corresponding to the three selected datasets. Subsequently, 
all datasets were normalized as necessary through quantile 
normalization using the bestNormalize package in R. We 
assessed the raw data for logarithmic fold change values 
and, when required, applied a log2 transformation. Probe 
identifiers were mapped to gene symbols based on the 
respective annotation platforms. For genes represented 
by multiple probes, we calculated the average expression 
value to obtain a single gene expression measure. Probes 
lacking data were excluded from the analysis.

Identification of Differentially Expressed Genes (DEGs)
Differential gene expression analysis was conducted 
on the GSE52903 dataset to identify DEGs between 
primary tumors and liver metastasis samples using the 
limma package (3) in R. A |log₂ fold change| ≥ 1 and a 
false discovery rate (FDR) < 0.05 were established as the 
threshold for significant gene expression differences.

Gene Ontology (GO) and KEGG Pathway Enrichment 
Analysis
To explore the biological functions of the DEGs, we 
performed KEGG (Kyoto Encyclopedia of Genes and 
Genomes, http://www.kegg.jp) and GO enrichment 
analyses on the selected DEGs using the ClusterProfiler 
(4) and GOplot (5) packages in R. Statistical significance 
was determined based on a Benjamini-Hochberg adjusted 
P value threshold of < 0.05.

Exploring Diagnostic Biomarkers Using Hybrid Machine 
Learning Algorithms
In this study, we employed a hybrid machine learning 
pipeline for biomarker discovery, integrating feature 
selection and classification. A GA was used to search for 
optimal subsets of genes; during the GA optimization 
process, an SVM classifier served as the fitness function, 
evaluating the classification performance (e.g. accuracy) 
of each candidate subset in distinguishing tumor from 
normal samples. This hybrid GA-SVM approach ensured 
the identification of gene sets most relevant for accurate 
classification. After the GA-SVM feature selection 
process, the final selected features were used to train 
and evaluate classifiers using both SVM and an artificial 
neural network (ANN), allowing direct comparison of 
their diagnostic performance. Details of each algorithm 
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and their implementation are described in the following 
sections.

Support Vector Machine 
SVM is known for its ability to handle both linear and 
non-linear classification tasks by transforming the feature 
space using a kernel function.23

The SVM decision function defines the boundary that 
separates the classes and is expressed as:

f(x) = W.ϕ(X) + b

where W is the weight vector that determines the 
orientation of the decision boundary, ϕ(X) represents 
the feature mapping function that transforms the input 
features X into a higher-dimensional space to make non-
linear relationships separable, and b is the bias term that 
shifts the decision boundary. 

In training the SVM model, the goal is to find the 
optimal decision boundary by minimizing an objective 
function that balances maximizing the margin width 
(distance between support vectors) and minimizing 
the classification error. The optimization problem is 
formulated as:

min ( )2 *
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where yi represents the class label ( + 1 or −1) of the 
i-th sample, ξi are slack variables that allow the model to 
tolerate some misclassifications to improve generalization 
in non-linearly separable cases, and C is the regularization 
parameter that controls the trade-off between maximizing 
the margin and minimizing the classification error.23

By solving this optimization problem, SVM identifies 
the hyperplane that best separates the data classes, even in 
complex scenarios with overlapping data points.23

Genetic Algorithm for Feature Selection
GA is a heuristic optimization technique inspired by the 
process of natural selection.24 In this context, we used GA 
to explore the feature space and identify an optimal subset 
of features that contribute the most to the classification 
task. Each solution (chromosome) represents a binary 
vector, where 1 indicates the selection of a feature, and 0 
indicates its exclusion.

The fitness function used to evaluate each chromosome 
was based on the performance of the SVM classifier, 
measured using metrics such as accuracy and mean 
squared error. The GA operations (selection, crossover, 
and mutation) were applied to evolve the population 
toward better solutions over successive generations. 
The aim was to minimize the classification error while 

selecting the most informative subset of features.24,25

Artificial Neural Networks 
The neural network was constructed with one hidden 
layer and trained using backpropagation, a widely used 
algorithm for optimizing neural network weights.26

The architecture of the neural network was optimized 
using grid search to determine the best number of neurons, 
learning rate, and activation functions. To prevent 
overfitting, techniques such as dropout regularization and 
early stopping were employed.27

Cross-Validation and Evaluation Metrics
Both the SVM and neural network models were evaluated 
using 10-fold cross-validation to ensure robustness and 
generalizability of the results. The dataset was divided 
into 10 subsets, and the model was trained on 9 subsets 
while being tested on the remaining one. This process 
was repeated 10 times, and the average performance was 
recorded.

The models’ performance was assessed using standard 
classification metrics such as accuracy, precision, recall, 
F1 score, and area under the ROC curve (AUC), providing 
a comprehensive comparison between the SVM-GA and 
ANNs models.

By utilizing GA for feature selection and comparing 
the performance with ANNs, our approach efficiently 
reduced the dimensionality of the feature space and 
improved classification accuracy. The SVM-GA model 
demonstrated competitive performance, making it a 
viable alternative to neural networks for the classification 
task.

PPI Network Analysis for Identifying Therapeutic 
Targets
Genes selected more than 3,000 times across the hybrid 
models were utilized to construct the PPI network. PPI 
data were obtained from the Search Tool for the Retrieval 
of Interacting Genes (STRING) database (https://string-
db.org). DEGs with a high confidence score (combined 
score > 0.7) derived from active sources, including 
experimental data, databases, co-expression analyses, and 
others, were incorporated into the network. 

The network was visualized using a spring-embedded 
layout algorithm, designed to optimize node placement 
by minimizing edge crossings and overlaps between 
nodes (genes).28 Key network metrics, such as node 
degree, betweenness centrality, and clustering coefficient, 
were calculated using the built-in tools in Cytoscape and 
employed as the criteria for gene selection.

Survival Analysis of Hub Genes for Identifying Prognostic 
Biomarkers
In our study, survival analysis was performed to identify 
genes with potential prognostic significance. This 
analysis focused on the genes identified in the previous 
step through the PPI network. To further investigate the 

https://string-db.org/cgi/input.pl/
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association between hub gene expression and cervical 
cancer prognosis, we utilized the GEPIA platform for 
survival analysis, employing the log-rank test for statistical 
evaluation. A P value of < 0.05 was considered statistically 
significant. The hub genes identified through this process 
were regarded as key prognostic markers for CESC.

Validation of Hub Genes’ Expression Levels
Expression data from GEPIA was used to assess the 
expression levels of the prognostic hub genes identified 
in the previous step, comparing cervical cancer samples 
to normal tissues. The results were visualized through 
boxplots. Additionally, to investigate the differential 
protein expression of these prognostic hub genes, 
immunohistochemistry images from the Human Protein 
Atlas (HPA) database (http://www.proteinatlas.org) were 
analyzed to differentiate between normal cervical tissues 
and cervical tumor samples.

Construction of Transcription Factor-DEG Network for 
Prognostic Genes
To identify the transcription factors (TFs) regulating 
the key genes with prognostic value, we utilized the 
NetworkAnalyst online tool. NetworkAnalyst is a web-
based platform for comprehensive gene expression 
profiling and meta-analysis through network-based visual 
analytics.29 Genes with prognostic value were submitted 
to NetworkAnalyst to gather information on TF-gene 
interactions. The resulting datasets were then exported 
to the Cytoscape software (version 3.10.3) for further 
analysis. This network provides insight into the regulatory 
mechanisms governing the expression of prognostic 
genes, offering a deeper understanding of their potential 
role in disease progression.

Software and Reproducibility
All computational analyses were performed using 
MATLAB (version R2021b) and R (version 4.4.2). Specific 

R packages included limma, clusterProfiler, GOplot, and 
bestNormalize. The Cytoscape software (version 3.10.3 
and v.3.8.2) and the NetworkAnalyst online platform 
were also utilized for network-based analyses and 
visualizing PPI and TF–DEGs Interaction network. All 
custom scripts and codes are available from the authors 
upon reasonable request. 

Results
Screening Cervical Cancer-Associated DEGs in the 
Datasets
Figure 1 illustrates the identification of DEGs through a 
volcano plot (Figure 1A) and the dimensional distribution 
of samples using UMAP (Figure 1B). In GSE52903 as the 
main dataset, 917 DEGs containing 347 upregulated and 
570 downregulated genes. In the validation datasets, 813 
DEGs were screened for GSE7410 and 887 DEGs for GSE 
29570. 

GO and KEGG Pathway Analysis
KEGG pathway analysis revealed that “cell cycle”, 
“pathways in cancer”, “oocyte meiosis” and “PI3K-
Akt signaling pathway” are among the most important 
pathways related to the screened DEGs. Additionally, 
GO analysis, which classifies genes into three categories 
(molecular function (MF), biological process (BP), and 
cellular component (CC)) showed that DEGs were more 
strongly related to BP of “cell cycle process” (GO:0022402), 
CC of “condensed chromosome” (GO:0000793) and 
MF of “extracellular matrix structural constituent” 
(GO:0005201) (Figure 2).

Exploring Diagnostic Biomarkers: Feature Selection 
using ML
Feature selection was performed using a GA to identify 
the most significant DEGs associated with cervical cancer. 
GA was executed 100 times, with each run comprising 
100 generations. During each generation, potential gene 

Figure 1. Identification of DEGs between Normal and Tumor Samples. (A) Volcano plot illustrating the DEGs identified in the GSE52903 dataset. (B) UMAP 
(Uniform Manifold Approximation and Projection) visualization of the sample distribution, showcasing the clustering and separation of normal and tumor 
samples based on gene expression profiles
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subsets were evaluated based on their classification 
performance using a SVM as the fitness function. From 
these runs, 8000 combinations of the best-performing 
gene subsets were extracted. Subsequently, to achieve 
100% classification accuracy, the top eight genes with the 
highest selection frequency each appearing more than 
4000 times across the 8000 selected combinations were 
chosen as the most significant features. The final SVM 
model (with linear kernel) was evaluated 50 times using 
these selected genes, with 5-fold cross-validation. The 
accuracy results are summarized in Table 1.

For validation, two independent datasets, GSE29570 and 
GSE7410, were used. The eight selected genes “CXCL9, 
CTGF, ZNF704, ZEB2, SASH1, PTN, KPNA2, SLC5A1” 
were evaluated in these datasets, and the SVM model was 
applied to classify tumor and normal samples. The results 
of this validation process, including model accuracy and 
performance metrics, are presented in Table 2. 

Identification of Therapeutic Targets Based on PPI 
Network
In this study, 508 genes that were selected more than 
3000 times by the applied model were subjected to 
PPI network analysis. Based on the defined criteria, 
42 genes were identified as key nodes in the network, 
with the corresponding PPI network presented in 
(Supplementary file1, Figure S1). We consider these genes 
as potential therapeutic targets for cervical cancer, given 
their central roles and high connectivity within the PPI 
network. These genes, selected based on their prominent 
interactions, represent promising candidates for further 
investigation in the development of targeted therapies for 
cervical cancer. 

Among these selected genes, CDK1, BRCA1, CCNB1, 
BIRC5, CHEK1, RAD51, AURKB, AURKA, and BUB1 

demonstrated the highest degree of connectivity, 
highlighting their central roles in the network. 

Survival Analysis of Key Genes Selected from the Network 
for Identification of Biomarkers with Prognostic Value 
Survival analysis was conducted for the 42 genes identified 
in the previous step using the GEPIA platform. Among 
these genes, six (CXCL1, DNMT1, MMP1, MYBL2, 
PCNA, and RRM2) were identified as having statistically 
significant prognostic value based on this criterion 
(Figure 3). These genes were subsequently selected for 
further investigation as potential prognostic biomarkers.

Expression and Immunohistochemistry Validation of 
Prognostic Biomarkers In Silico
Using the GEPIA platform, we validated the expression 
levels of the selected genes between normal and cervical 
cancer samples. The analysis revealed that among the six 
final prognostic biomarkers, CXCL1, MMP1, MYBL2, 
PCNA, and RRM2 exhibited significant overexpression 
in cervical cancer tissues compared to normal tissues 
(Supplementary File 1, Figure S2A). Among these, the 
protein expression levels of four hub genes (excluding 
CXCL1 and MMP1, for which no IHC data was 
available) were notably higher in normal cervix tissues 
compared to cervical cancer tissues, corroborating 
the findings from the gene expression analysis 
(Supplementary file 1, Figure S2 B).

Transcription Factors Modulating Prognostic 
Biomarkers
The TF–DEGs network was constructed using the 
NetworkAnalyst tool and ENCODE database. According 
to this database, a total of 51 TFs were found to be related 
to the genes. Among these TFs, E2F1 and TP63 were 

Figure 2. Gene Ontology and KEGG Pathway Enrichment Analyses of DEGs Using ClusterProfiler. (A) Results of GO enrichment analysis, categorized into 
biological processes, cellular components, and molecular functions. (B) KEGG pathway enrichment analysis highlighting the significant pathways associated 
with the identified DEGs

A B



Arch Iran Med. 2025;28(12)682

Nezamabadi Farahani et al

related to five of these six gene regulating them and can be 
considered as the most important TFs. In addition, MYC, 
BACH1, FOXA1, KLF4, EP300 and POU5F1 were other 
important TFs in the constructed network. The network 
is shown in (Supplementary file 1, Figure S3).

Discussion
This research introduced a hybrid machine learning 
model designed to accurately predict cervical cancer, 
using gene expression data from human samples. 
The findings demonstrated that the proposed model 

effectively distinguished between cervical cancer cases 
and healthy controls. To assess its performance, the 
predicted outcomes (binary classification: cervical cancer 
vs. control) from the model during the validation phase 
(test set) were compared to the actual known diagnoses 
(true binary response: cervical cancer vs. control). A high 
AUC and accuracy would indicate an optimal prediction 
model. Additionally, a traditional SVM (without GA) and 
ANN were trained and compared with the hybrid model. 
The results indicated that the proposed hybrid model 
outperformed the traditional SVM and ANN, with GA 

Table1. Comparison of Classification Performance on the GSE52903 Dataset Using Different Approaches

Method Accuracy % Precision % Recall % F1 score % ROC AUC %
Number of selected 

features

SVM-GA
Best practice

100 100 100 100 100 8

SVM-GA* (Mean ± SD) 98.90 ± 0.60 99.22 ± 0.93 99.36 ± 0.88 99.28 ± 0.38 99.0 ± 0.12 8

SVM 98.61 98.18 100 99.08 99.09 917

ANN 97.22 98.18 98.18 98.18 96.15 917

SVM, support vector machine; GA, genetic algorithm; ANN, artificial neural network; SD, standard deviation; ROC AUC, area under the ROC curve.
*Result is presented as mean ± SD in 50 repeats.

Table 2. Performance Evaluation of the SVM Model Using the Eight Selected Genes on the Validation Datasets (GSE29570 and GSE7410)

Data set Accuracy % Precision % Recall % F1 score %

GSE29570 98.80 ± 1.0 99.50 ± 1.0 98.8 ± 1.0 99.1 ± 1.0

GSE7410 100 ± 0 100 ± 0 100 ± 0 100 ± 0

GSE, Gene Expression Omnibus Series.
Results are presented as Mean ± SD in 100 repeats.

Figure 3. Survival Analysis of Therapeutic Targets. This figure presents Kaplan-Meier plots illustrating the survival analysis of the therapeutic target genes. The 
figure highlights the plots for genes with significant prognostic value including CXCL1, MYBL2, PCNA, MMP1, DNMT1 and RRM2 as determined overall 
survival analysis in GEPIA
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significantly enhancing the SVM classifier’s performance, 
achieving an impressive accuracy rate of 99%. Moreover, 
the application of a GA for feature selection proved highly 
effective in identifying the most relevant genes associated 
with cervical cancer. This is evident from the validation 
results, where the selected eight genes enabled the SVM 
model to achieve high accuracy in predicting outcomes on 
independent datasets (GSE29570 and GSE7410). The GA 
successfully reduced the dimensionality of the data while 
retaining the most informative features, allowing the 
classification model to perform at its best. Furthermore, 
the SVM classifier demonstrated excellent performance, 
particularly when used in conjunction with the GA-
selected features. By reducing the number of features, the 
model not only maintained its predictive accuracy but 
also exhibited an improvement compared to the scenario 
where no feature selection was applied. This highlights 
the impact of dimensionality reduction in mitigating 
overfitting and enhancing the model’s ability to generalize 
across datasets. These findings emphasize the robustness 
and potential of combining GA-based feature selection 
with SVM for biomarker identification and classification 
tasks in biomedical studies.

Similar findings have been reported in other studies, 
where the combination of GA with SVM has proven 
effective in feature selection and improving classification 
accuracy in cancer research. For instance, a study by 
Huerta et al. demonstrated the effectiveness of the GA-
SVM approach in gene selection and microarray data 
classification.20 Similarly, Tapak et al applied GA-SVM 
in identifying gene expression signatures for disease 
classification, showing enhanced performance compared 
to traditional methods.30

These findings emphasize the robustness and potential 
of combining GA-based feature selection with SVM 
for biomarker identification and classification tasks in 
biomedical studies.

The eight genes (CXCL9, CTGF, ZNF704, ZEB2, 
SASH1, PTN, KPNA2, and SLC5A1) were selected 
through our hybrid model approach as potential 
diagnostic biomarkers for cervical cancer. These genes, 
which were selected more than 4000 time in our feature 
selection method, have been implicated in various 
molecular processes associated with the development 
and progression of cervical cancer, including immune 
response regulation, tumor progression, metastasis, and 
cellular signaling. Each of these genes plays a crucial role 
in the disease, and their potential as diagnostic markers 
lies in the mechanisms through which they contribute to 
the pathogenesis of cervical cancer. Further details on the 
genes are provided in (Supplementary file 2).

In the next section of our study, we focused on identifying 
biomarkers with prognostic value in cervical cancer. To 
achieve this, we systematically evaluated the 42 therapeutic 
targets identified in the previous step to determine which 
ones also possess prognostic significance. By incorporating 
this additional filtering step, we strengthened our analysis 

by narrowing down the candidate genes to those that are 
not only therapeutically relevant but also hold prognostic 
value. Among the 42 therapeutic targets examined, six 
genes (CXCL1, DNMT1, MMP1, MYBL2, PCNA, and 
RRM2) demonstrated statistically a significant prognostic 
value. Notably, DNMT1 and MMP1 emerged as the most 
significant prognostic markers, with log-rank P values of 
0.00041 and 0.0039, respectively.

DNMT1 and MMP1 play crucial roles in cervical 
cancer progression and prognosis. Guo et al found that 
DNMT1 expression is significantly elevated in cervical 
cancer tissues compared to normal tissues, correlating 
with pathological stage, lymph node metastasis, and high-
risk HPV infection.31,32 Higher DNMT1 expression was 
associated with lower 3-year survival rates and showed 
a strong correlation with galectin-1 levels, suggesting its 
potential as a prognostic marker.32 Similarly, MMP1 has 
been linked to lymph node metastasis and poor survival 
outcomes. A meta-analysis of 18 studies confirmed that 
MMP overexpression, including MMP1, is associated with 
reduced overall and recurrence-free survival in cervical 
cancer patients.33-35 Persistent MMP1 overexpression in 
metastatic samples highlights its role in tumor progression 
and its potential as a biomarker for disease severity and 
metastatic risk. Further studies are needed to validate its 
clinical utility.

The next phase of our study focused on identifying 
key transcription factors that regulate the final six 
genes selected in the previous step, which serve as both 
prognostic markers and therapeutic targets. This step 
was crucial for uncovering the downstream regulatory 
mechanisms governing the expression of these genes. 
E2F1 and TP63 were identified as the most significant 
transcription factors modulating these genes, playing a 
crucial role in regulating their expression and influencing 
the molecular pathways associated with cervical cancer 
progression.

E2F1 and TP63 are important players in the progression 
of cervical cancer. E2F1, the one often upregulated in 
high-risk HPV infections, promotes tumor growth and 
migration by classical target genes, including TOP2A, 
BIRC5, MDM2, and MELK.36-38 Because of its central 
role in cancer development, the targeting of E2F1 
and downstream pathways represents potential new 
therapeutic approaches. Likewise, TP63 is a member 
of the p53 family with two main isoforms: TAp63 and 
ΔNp63, with opposing impacts in a tumor. Increased 
ratios of ΔNp63 to TAp63 expression are associated 
with the progression of cervical intraepithelial neoplasia 
into invasive cancers.39,40 In HPV-positive patients, the 
degree of TP63 promoter methylation further correlates 
with the severity of lesions, supporting its potential as 
a diagnostic and prognostic marker.41 Such knowledge 
further elucidates the importance of E2F1 and TP63 as 
possible molecular targets for improving the diagnosis 
and treatment of cervical cancer.

While our study presents promising results in 
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identifying novel key genes for cervical cancer diagnosis 
and prognosis through a hybrid machine learning 
approach, we acknowledge certain limitations that may 
affect the robustness and generalizability of our findings. 
One such limitation is the relatively small sample size for 
some groups, particularly the normal tissue samples. To 
mitigate this, we validated our findings using multiple 
external datasets, including the TCGA dataset, to ensure 
the robustness and generalizability of the identified 
biomarkers.

Additionally, although we performed in-silico validation 
using gene expression and PPI data, our study lacks 
experimental validation, which is crucial for confirming 
the functional roles of the identified biomarkers in 
cervical cancer progression. Further research involving 
in vitro and in vivo validation of these genes is needed to 
fully establish their potential as therapeutic targets.

Another consideration is the use of a single dataset as 
the main dataset in our study. While this approach helped 
to prevent batch effects that could arise from merging 
multiple datasets, it also allowed for a more focused and 
controlled analysis.42 To ensure the generalizability of our 
findings, we validated the results using multiple external 
datasets. This strategy mitigated potential biases and 
reinforced the robustness and reliability of our results, 
demonstrating the effectiveness of hybrid machine 
learning algorithms in providing consistent and accurate 
insights across different data sources.

Furthermore, cervical cancer is a highly heterogeneous 
disease, with multiple molecular subtypes and diverse 
pathways contributing to its progression. While our study 
focused on key genes and pathways, it may not fully capture 
the complexity of the disease. Incorporating multi-omics 
data, such as genomics, proteomics, and epigenomics, 
could offer a more comprehensive understanding of 
cervical cancer biology and improve the identification of 
more accurate biomarkers for diagnosis and prognosis.

Conclusion
In this study, we applied a hybrid machine learning 
approach combining GA and SVM to identify key 
genes linked to cervical cancer. Eight significant genes 
(CXCL9, CTGF, ZNF704, ZEB2, SASH1, PTN, KPNA2, 
and SLC5A1) were identified as potential diagnostic 
biomarkers, involved in immune regulation, tumor 
progression, and metastasis. The hybrid SVM-GA model 
achieved 99% accuracy in classifying cancerous tissues, 
demonstrating its potential for early detection. PPI analysis 
revealed 42 therapeutic targets and survival analysis 
revealed prognostic genes, identifying CXCL1, DNMT1, 
MMP1, MYBL2, PCNA, and RRM2 as key therapeutic 
targets with a significant prognostic value. Additionally, 
transcription factor analysis highlighted E2F1 and TP63 
as key regulators. The identified genes and pathways offer 
valuable targets for personalized treatment approaches, 
with the potential to improve patient outcomes. Future 

research should focus on validating these biomarkers in 
larger, diverse patient populations to fully explore their 
clinical utility.
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