ARCHIVES OF

IRANIAN
http://journalaim.com M E D I CI N E

Open
Access

In Silico Transcriptomic Analysis for Identification of m
Potential Diagnostic and Prognostic Biomarkers and
Therapeutic Targets in Cervical Cancer using a Hybrid
Genetic Algorithm-Support Vector Machine Approach

Leila Nezamabadi Farahani' =, Anoshirvan Kazemnejad' ~, Mahlagha Afrasiabi?, Leili Tapak®*

Arch Iran Med. December 2025;28(12):677-686

doi 10.34172/aim.34814

'Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
’Department of Computer, Hamedan University of Technology, Hamedan, Iran

*Modeling of Noncommunicable Diseases Research Center, Institute of Health Sciences and Technologies,
Hamadan University of Medical Sciences, Hamadan, Iran

*Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Background: Cervical cancer is the leading malignancy among women worldwide, posing clinical and public health challenges.
This in silico study aims to identify potential diagnostic biomarkers, therapeutic targets, and prognostic markers associated with
cervical cancer through integrative bioinformatics approaches.

Methods: A hybrid machine learning approach, combining genetic algorithm (GA) and support vector machine (SVM), was applied
to high-dimensional gene expression data from publicly available transcriptomic datasets, including the Gene Expression Omnibus
(GEO) and The Cancer Genome Atlas (TCGA). A total of 72 Geo samples (Affymetrix, Illumina) served as the primary dataset after
normalization.

Results: The GA-SVM model achieved about 99% accuracy and AUC with 10-fold cross validation, clearly separating cervical
cancer from normal tissues. Eight genes (CXCL9, CTGF, ZNF704, ZEB2, SASH1, PTN, KPNA2, SLC5A1) were identified as
diagnostic biomarkers. Protein-protein interaction (PPI) and functional enrichment analyses revealed 42 therapeutic targets (e.g.
CDKT, BRCAT, CCNBT1, and AURKB) linked to regulating cell cycle, DNA repair, and mitotic processes. Survival analysis identified
six genes (CXCL1, DNMT1, MMP1, MYBL2, PCNA, and RRM2) as key prognostic markers. Additionally, transcription factor
analysis identified E2F1 and TP63 as major regulators of the prognostic genes, elucidating the molecular mechanisms underlying
cervical cancer progression.

Conclusion: The identified gene signatures may serve as candidates for hypothesis generation and provide a computational
framework to prioritize biomarkers and therapeutic targets in cervical cancer. However, these findings are based on in silico
analyses and require experimental and clinical validation before translation into practice.
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Introduction

Cervical cancer ranks as the second most prevalent
cancer among women globally."! The onset of this cancer
is closely linked to persistent infection with the human
papillomavirus (HPV).> Approximately 120 HPV types
have been identified to date, which are classified based
on their oncogenic potential into high-risk and low-
risk categories. The high-risk types, such as HPV16 and
HPV18, are more likely to cause cancer, while the low-
risk types, including HPV6, HPV11, and HPV40, are less
likely to lead to malignant transformation.>® Globally,
HPV16 is responsible for approximately 57% of cervical
cancer cases, with HPV18 contributing to around 16%.
However, the prevalence of specific HPV types in cervical
cancer varies across different regions.*

Interestingly, not all HPV infections lead to cervical
cancer. Research has shown that nearly 90% of HPV
infections clear up on their own within two years.
However, the reasons behind the resolution of HPV
infections in some cases and the persistence in others
remain unclear. Individual susceptibility factors may
contribute to the varying outcomes of HPV infections.

Currently, surgical procedures like conization or loop
electrosurgical excision are the primary treatments for
patients with pre-cancerous lesions or early-stage cervical
cancer.”® These methods aim to remove abnormal tissue
and prevent further progression of the disease. However,
there is still a critical need for improved diagnostic
approaches that can facilitate early detection and provide
a better understanding of the molecular basis of the
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disease.

Recent advancements in bioinformatics tools have
facilitated large-scale analysis of transcriptomic data,
enabling systematic biomarker discovery in cervical
and other cancers.”'? Most previous studies relied on
conventional approaches such as statistical tests or
single-classifier machine learning models for gene
selection and diagnosis.”>'* However, these traditional
methods, including t-test, fold-change analysis, and
univariate regression, may overlook complex, non-linear
relationships in gene expression data, limiting their
diagnostic potential."*'* To address these limitations,
more sophisticated machine learning models including
support vector machines (SVMs), random forests, and
other classifiers have been applied to high-dimensional
datasets.””*” Among these, hybrid metaheuristic-ML
approaches such as genetic algorithms (GA) combined
with SVM have demonstrated improved effectiveness
for feature selection and classification tasks, enabling
more comprehensive exploration of feature space and
identification of informative biomarkers.'"*

Nevertheless, the use of such hybrid methods in cervical
cancer studies is still limited, and many published works
do not integrate these approaches with downstream
functional analyses, such as protein-protein interaction
(PPI) network construction and enrichment assessment.

The primary objective of this study is to identify novel
key genes that can be used as biomarkers for cervical
cancer diagnosis by utilizing a hybrid GA-SVM approach.
By employing these advanced machine learning
techniques, the study aims to (1) enhance early detection
accuracy and offer new insight into the genetic pathways
involved in cervical cancer, (2) evaluate the diagnostic
accuracy of GA-SVM in distinguishing tumor from
normal samples (3) identify potential therapeutic targets
through PPI network and enrichment analyses, and (4)
determine prognostic markers using survival analysis by
Gene Expression Profiling Interactive Analysis (GEPIA)
platform. Ultimately, this approach could lead to more
effective screening and personalized treatment strategies
for individuals at risk of developing cervical cancer.

Materials and Methods

Study Design, Data Acquisition, and Preprocessing

We performed a comprehensive search of the Gene
Expression Omnibus (GEO) database using the keyword
“Cervical cancer” to identify pertinent datasets. The
selection criteria were: (1) inclusion of primary cervical
cancer and normal samples; (2) each group comprising
over 20 samples; and (3) datasets encompassing more than
10,000 genes. Consequently, three microarray datasets
GSE29570, GSE7410, and GSE52903 were incorporated
into this study.

Among them, GSE52903, containing 55 cervical tumor
samples and 17 exocervical control samples, was used as
the main dataset, while GSE29570 (45 tumor, 17 normal)
and GSE7410 (40 tumor, 5 normal) served as validation

datasets. These datasets can be accessed at the NCBI GEO
via the following link: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi.

To further validate our findings, we utilized the GEPIA
web server, which provides access to RNA sequencing
expression data from The Cancer Genome Atlas (TCGA)
and the Genotype-Tissue Expression (GTEx) projects.”!
Specifically, we analyzed the cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC)
dataset from TCGA, comprising 306 tumor and 13
normal samples.*

For each platform, we retrieved the raw data
corresponding to the three selected datasets. Subsequently,
all datasets were normalized as necessary through quantile
normalization using the bestNormalize package in R. We
assessed the raw data for logarithmic fold change values
and, when required, applied a log2 transformation. Probe
identifiers were mapped to gene symbols based on the
respective annotation platforms. For genes represented
by multiple probes, we calculated the average expression
value to obtain a single gene expression measure. Probes
lacking data were excluded from the analysis.

Identification of Differentially Expressed Genes (DEGs)
Differential gene expression analysis was conducted
on the GSE52903 dataset to identify DEGs between
primary tumors and liver metastasis samples using the
limma package (3) in R. A [log, fold change|>1 and a
false discovery rate (FDR)<0.05 were established as the
threshold for significant gene expression differences.

Gene Ontology (GO) and KEGG Pathway Enrichment
Analysis

To explore the biological functions of the DEGs, we
performed KEGG (Kyoto Encyclopedia of Genes and
Genomes, http://www.kegg.jp) and GO enrichment
analyses on the selected DEGs using the ClusterProfiler
(4) and GOplot (5) packages in R. Statistical significance
was determined based on a Benjamini-Hochberg adjusted
P value threshold of <0.05.

Exploring Diagnostic Biomarkers Using Hybrid Machine
Learning Algorithms

In this study, we employed a hybrid machine learning
pipeline for biomarker discovery, integrating feature
selection and classification. A GA was used to search for
optimal subsets of genes; during the GA optimization
process, an SVM classifier served as the fitness function,
evaluating the classification performance (e.g. accuracy)
of each candidate subset in distinguishing tumor from
normal samples. This hybrid GA-SVM approach ensured
the identification of gene sets most relevant for accurate
classification. After the GA-SVM feature selection
process, the final selected features were used to train
and evaluate classifiers using both SVM and an artificial
neural network (ANN), allowing direct comparison of
their diagnostic performance. Details of each algorithm

678 Arch Iran Med. 2025;28(12)


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi

and their implementation are described in the following
sections.

Support Vector Machine
SVM is known for its ability to handle both linear and
non-linear classification tasks by transforming the feature
space using a kernel function.”

The SVM decision function defines the boundary that
separates the classes and is expressed as:

fx)=W.¢(X)+b

where W is the weight vector that determines the
orientation of the decision boundary, ¢(X) represents
the feature mapping function that transforms the input
features X into a higher-dimensional space to make non-
linear relationships separable, and b is the bias term that
shifts the decision boundary.

In training the SVM model, the goal is to find the
optimal decision boundary by minimizing an objective
function that balances maximizing the margin width
(distance between support vectors) and minimizing
the classification error. The optimization problem is
formulated as:

in 1 " .
min EH wi? +C;(§i +&)

subject to:

v (W-(X)+b)21- &, £>0

where y, represents the class label (+1 or —1) of the
i-th sample, & are slack variables that allow the model to
tolerate some misclassifications to improve generalization
in non-linearly separable cases, and Cis the regularization
parameter that controls the trade-off between maximizing
the margin and minimizing the classification error.”

By solving this optimization problem, SVM identifies
the hyperplane that best separates the data classes, even in
complex scenarios with overlapping data points.?

Genetic Algorithm for Feature Selection

GA is a heuristic optimization technique inspired by the
process of natural selection.? In this context, we used GA
to explore the feature space and identify an optimal subset
of features that contribute the most to the classification
task. Each solution (chromosome) represents a binary
vector, where 1 indicates the selection of a feature, and 0
indicates its exclusion.

The fitness function used to evaluate each chromosome
was based on the performance of the SVM classifier,
measured using metrics such as accuracy and mean
squared error. The GA operations (selection, crossover,
and mutation) were applied to evolve the population
toward better solutions over successive generations.
The aim was to minimize the classification error while

Prognostic biomarkers of ce_

selecting the most informative subset of features.”*

Artificial Neural Networks

The neural network was constructed with one hidden
layer and trained using backpropagation, a widely used
algorithm for optimizing neural network weights.?

The architecture of the neural network was optimized
using grid search to determine the best number of neurons,
learning rate, and activation functions. To prevent
overfitting, techniques such as dropout regularization and
early stopping were employed.”

Cross-Validation and Evaluation Metrics

Both the SVM and neural network models were evaluated
using 10-fold cross-validation to ensure robustness and
generalizability of the results. The dataset was divided
into 10 subsets, and the model was trained on 9 subsets
while being tested on the remaining one. This process
was repeated 10 times, and the average performance was
recorded.

The models’ performance was assessed using standard
classification metrics such as accuracy, precision, recall,
F1 score, and area under the ROC curve (AUC), providing
a comprehensive comparison between the SVM-GA and
ANNs models.

By utilizing GA for feature selection and comparing
the performance with ANNs, our approach efficiently
reduced the dimensionality of the feature space and
improved classification accuracy. The SVM-GA model
demonstrated competitive performance, making it a
viable alternative to neural networks for the classification
task.

PPI Network Analysis for Identifying Therapeutic
Targets

Genes selected more than 3,000 times across the hybrid
models were utilized to construct the PPI network. PPI
data were obtained from the Search Tool for the Retrieval
of Interacting Genes (STRING) database (https://string-
db.org). DEGs with a high confidence score (combined
score>0.7) derived from active sources, including
experimental data, databases, co-expression analyses, and
others, were incorporated into the network.

The network was visualized using a spring-embedded
layout algorithm, designed to optimize node placement
by minimizing edge crossings and overlaps between
nodes (genes).”® Key network metrics, such as node
degree, betweenness centrality, and clustering coefficient,
were calculated using the built-in tools in Cytoscape and
employed as the criteria for gene selection.

Survival Analysis of Hub Genes for Identifying Prognostic
Biomarkers

In our study, survival analysis was performed to identify
genes with potential prognostic significance. This
analysis focused on the genes identified in the previous
step through the PPI network. To further investigate the
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association between hub gene expression and cervical
cancer prognosis, we utilized the GEPIA platform for
survival analysis, employing the log-rank test for statistical
evaluation. A P value of <0.05 was considered statistically
significant. The hub genes identified through this process
were regarded as key prognostic markers for CESC.

Validation of Hub Genes’ Expression Levels

Expression data from GEPIA was used to assess the
expression levels of the prognostic hub genes identified
in the previous step, comparing cervical cancer samples
to normal tissues. The results were visualized through
boxplots. Additionally, to investigate the differential
protein expression of these prognostic hub genes,
immunohistochemistry images from the Human Protein
Atlas (HPA) database (http://www.proteinatlas.org) were
analyzed to differentiate between normal cervical tissues
and cervical tumor samples.

Construction of Transcription Factor-DEG Network for
Prognostic Genes

To identify the transcription factors (TFs) regulating
the key genes with prognostic value, we utilized the
NetworkAnalyst online tool. NetworkAnalyst is a web-
based platform for comprehensive gene expression
profiling and meta-analysis through network-based visual
analytics.”? Genes with prognostic value were submitted
to NetworkAnalyst to gather information on TF-gene
interactions. The resulting datasets were then exported
to the Cytoscape software (version 3.10.3) for further
analysis. This network provides insight into the regulatory
mechanisms governing the expression of prognostic
genes, offering a deeper understanding of their potential
role in disease progression.

Software and Reproducibility

All computational analyses were performed using
MATLAB (version R2021b) and R (version 4.4.2). Specific

A 5 i@ Cancer vs Normal

-log10(Pvalue)
G
1

R packages included limma, clusterProfiler, GOplot, and
bestNormalize. The Cytoscape software (version 3.10.3
and v.3.8.2) and the NetworkAnalyst online platform
were also utilized for network-based analyses and
visualizing PPI and TF-DEGs Interaction network. All
custom scripts and codes are available from the authors
upon reasonable request.

Results

Screening Cervical Cancer-Associated DEGs in the
Datasets

Figure 1 illustrates the identification of DEGs through a
volcano plot (Figure 1A) and the dimensional distribution
of samples using UMAP (Figure 1B). In GSE52903 as the
main dataset, 917 DEGs containing 347 upregulated and
570 downregulated genes. In the validation datasets, 813
DEGs were screened for GSE7410 and 887 DEGs for GSE
29570.

GO and KEGG Pathway Analysis

KEGG pathway analysis revealed that “cell cycle”,
“pathways in cancer”, “oocyte meiosis” and “PI3K-
Akt signaling pathway” are among the most important
pathways related to the screened DEGs. Additionally,
GO analysis, which classifies genes into three categories
(molecular function (MF), biological process (BP), and
cellular component (CC)) showed that DEGs were more
strongly related to BP of “cell cycle process” (GO:0022402),
CC of “condensed chromosome” (GO:0000793) and
MF of “extracellular matrix structural constituent”
(GO:0005201) (Figure 2).

Exploring Diagnostic Biomarkers: Feature Selection
using ML

Feature selection was performed using a GA to identify
the most significant DEGs associated with cervical cancer.
GA was executed 100 times, with each run comprising
100 generations. During each generation, potential gene

B UMAP plot, nbrs=15

Cancer

log2(fold change)

Figure 1. Identification of DEGs between Normal and Tumor Samples. (A) Volcano plot illustrating the DEGs identified in the GSE52903 dataset. (B) UMAP
(Uniform Manifold Approximation and Projection) visualization of the sample distribution, showcasing the clustering and separation of normal and tumor

samples based on gene expression profiles
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Figure 2. Gene Ontology and KEGG Pathway Enrichment Analyses of DEGs Using ClusterProfiler. (A) Results of GO enrichment analysis, categorized into
biological processes, cellular components, and molecular functions. (B) KEGG pathway enrichment analysis highlighting the significant pathways associated

with the identified DEGs

subsets were evaluated based on their classification
performance using a SVM as the fitness function. From
these runs, 8000 combinations of the best-performing
gene subsets were extracted. Subsequently, to achieve
100% classification accuracy, the top eight genes with the
highest selection frequency each appearing more than
4000 times across the 8000 selected combinations were
chosen as the most significant features. The final SVM
model (with linear kernel) was evaluated 50 times using
these selected genes, with 5-fold cross-validation. The
accuracy results are summarized in Table 1.
Forvalidation, two independent datasets, GSE29570 and
GSE7410, were used. The eight selected genes “CXCL9,
CTGF, ZNF704, ZEB2, SASH1, PTN, KPNA2, SLC5A1”
were evaluated in these datasets, and the SVM model was
applied to classify tumor and normal samples. The results
of this validation process, including model accuracy and
performance metrics, are presented in Table 2.

Identification of Therapeutic Targets Based on PPI
Network
In this study, 508 genes that were selected more than
3000 times by the applied model were subjected to
PPI network analysis. Based on the defined criteria,
42 genes were identified as key nodes in the network,
with the corresponding PPI network presented in
(Supplementary filel, Figure S1). We consider these genes
as potential therapeutic targets for cervical cancer, given
their central roles and high connectivity within the PPI
network. These genes, selected based on their prominent
interactions, represent promising candidates for further
investigation in the development of targeted therapies for
cervical cancer.

Among these selected genes, CDK1, BRCA1, CCNBI,
BIRC5, CHEK1, RAD51, AURKB, AURKA, and BUBI

demonstrated the highest degree of connectivity,
highlighting their central roles in the network.

Survival Analysis of Key Genes Selected from the Network
for Identification of Biomarkers with Prognostic Value

Survival analysis was conducted for the 42 genes identified
in the previous step using the GEPIA platform. Among
these genes, six (CXCL1, DNMT1, MMP1, MYBL2,
PCNA, and RRM2) were identified as having statistically
significant prognostic value based on this criterion
(Figure 3). These genes were subsequently selected for
further investigation as potential prognostic biomarkers.

Expression and Immunohistochemistry Validation of
Prognostic Biomarkers In Silico

Using the GEPIA platform, we validated the expression
levels of the selected genes between normal and cervical
cancer samples. The analysis revealed that among the six
final prognostic biomarkers, CXCL1, MMP1, MYBL2,
PCNA, and RRM2 exhibited significant overexpression
in cervical cancer tissues compared to normal tissues
(Supplementary File 1, Figure S2A). Among these, the
protein expression levels of four hub genes (excluding
CXCL1 and MMPI1, for which no IHC data was
available) were notably higher in normal cervix tissues
compared to cervical cancer tissues, corroborating
the findings from the gene expression analysis
(Supplementary file 1, Figure S2 B).

Transcription  Factors  Modulating
Biomarkers

The TF-DEGs network was constructed using the
NetworkAnalyst tool and ENCODE database. According
to this database, a total of 51 TFs were found to be related
to the genes. Among these TFs, E2F1 and TP63 were

Prognostic
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Table1. Comparison of Classification Performance on the GSE52903 Dataset Using Different Approaches

Method Accuracy % Precision %

Number of selected

Recall % F1 score % ROC AUC %

features
Z‘égf;’z o 100 100 100 100 100 8
SVM-GA" (Mean=SD) 98.90+0.60 99.22+0.93 99.36+0.88 99.28+0.38 99.0+0.12 8
SVM 98.61 98.18 100 99.08 99.09 917
ANN 97.22 98.18 98.18 98.18 96.15 917

SVM, support vector machine; GA, genetic algorithm; ANN, artificial neural
*Result is presented as mean+SD in 50 repeats.

network; SD, standard deviation; ROC AUC, area under the ROC curve.

Table 2. Performance Evaluation of the SVM Model Using the Eight Selected Genes on the Validation Datasets (GSE29570 and GSE7410)

Data set Accuracy % Precision % Recall % F1 score %
GSE29570 98.80+1.0 99.50+1.0 98.8+1.0 99.1+1.0
GSE7410 100+0 1000 100+0 100+0
, Gene Expression Omnibus Series.
GSE, G Exp Omnibus S
Results are presented as Mean +SD in 100 repeats.
Overall Survival Overall Survival Overall Survival
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Figure 3. Survival Analysis of Therapeutic Targets. This figure presents Kaplan-Meier plots illustrating the survival analysis of the therapeutic target genes. The
figure highlights the plots for genes with significant prognostic value including CXCL1, MYBL2, PCNA, MMP1, DNMT1 and RRM2 as determined overall

survival analysis in GEPIA

related to five of these six gene regulating them and can be
considered as the most important TFs. In addition, MYC,
BACHI, FOXA1, KLF4, EP300 and POU5F1 were other
important TFs in the constructed network. The network
is shown in (Supplementary file 1, Figure S3).

Discussion

This research introduced a hybrid machine learning
model designed to accurately predict cervical cancer,
using gene expression data from human samples.
The findings demonstrated that the proposed model

effectively distinguished between cervical cancer cases
and healthy controls. To assess its performance, the
predicted outcomes (binary classification: cervical cancer
vs. control) from the model during the validation phase
(test set) were compared to the actual known diagnoses
(true binary response: cervical cancer vs. control). A high
AUC and accuracy would indicate an optimal prediction
model. Additionally, a traditional SVM (without GA) and
ANN were trained and compared with the hybrid model.
The results indicated that the proposed hybrid model
outperformed the traditional SVM and ANN, with GA

682 Arch Iran Med. 2025;28(12)



significantly enhancing the SVM classifier’s performance,
achieving an impressive accuracy rate of 99%. Moreover,
the application of a GA for feature selection proved highly
effective in identifying the most relevant genes associated
with cervical cancer. This is evident from the validation
results, where the selected eight genes enabled the SVM
model to achieve high accuracy in predicting outcomes on
independent datasets (GSE29570 and GSE7410). The GA
successfully reduced the dimensionality of the data while
retaining the most informative features, allowing the
classification model to perform at its best. Furthermore,
the SVM classifier demonstrated excellent performance,
particularly when used in conjunction with the GA-
selected features. By reducing the number of features, the
model not only maintained its predictive accuracy but
also exhibited an improvement compared to the scenario
where no feature selection was applied. This highlights
the impact of dimensionality reduction in mitigating
overfitting and enhancing the model’s ability to generalize
across datasets. These findings emphasize the robustness
and potential of combining GA-based feature selection
with SVM for biomarker identification and classification
tasks in biomedical studies.

Similar findings have been reported in other studies,
where the combination of GA with SVM has proven
effective in feature selection and improving classification
accuracy in cancer research. For instance, a study by
Huerta et al. demonstrated the effectiveness of the GA-
SVM approach in gene selection and microarray data
classification.”® Similarly, Tapak et al applied GA-SVM
in identifying gene expression signatures for disease
classification, showing enhanced performance compared
to traditional methods.”

These findings emphasize the robustness and potential
of combining GA-based feature selection with SVM
for biomarker identification and classification tasks in
biomedical studies.

The eight genes (CXCL9, CTGF, ZNF704, ZEB2,
SASH1, PTN, KPNA2, and SLC5A1) were selected
through our hybrid model approach as potential
diagnostic biomarkers for cervical cancer. These genes,
which were selected more than 4000 time in our feature
selection method, have been implicated in various
molecular processes associated with the development
and progression of cervical cancer, including immune
response regulation, tumor progression, metastasis, and
cellular signaling. Each of these genes plays a crucial role
in the disease, and their potential as diagnostic markers
lies in the mechanisms through which they contribute to
the pathogenesis of cervical cancer. Further details on the
genes are provided in (Supplementary file 2).

Inthe nextsection of our study, we focused onidentifying
biomarkers with prognostic value in cervical cancer. To
achieve this, we systematically evaluated the 42 therapeutic
targets identified in the previous step to determine which
onesalso possess prognostic significance. By incorporating
this additional filtering step, we strengthened our analysis

Prognostic biomarkers of cervic_

by narrowing down the candidate genes to those that are
not only therapeutically relevant but also hold prognostic
value. Among the 42 therapeutic targets examined, six
genes (CXCL1, DNMT1, MMP1, MYBL2, PCNA, and
RRM2) demonstrated statistically a significant prognostic
value. Notably, DNMT1 and MMP1 emerged as the most
significant prognostic markers, with log-rank P values of
0.00041 and 0.0039, respectively.

DNMT1 and MMPI1 play crucial roles in cervical
cancer progression and prognosis. Guo et al found that
DNMT1 expression is significantly elevated in cervical
cancer tissues compared to normal tissues, correlating
with pathological stage, lymph node metastasis, and high-
risk HPV infection.’’*? Higher DNMT1 expression was
associated with lower 3-year survival rates and showed
a strong correlation with galectin-1 levels, suggesting its
potential as a prognostic marker.*” Similarly, MMP1 has
been linked to lymph node metastasis and poor survival
outcomes. A meta-analysis of 18 studies confirmed that
MMP overexpression, including MMP1, is associated with
reduced overall and recurrence-free survival in cervical
cancer patients.”? Persistent MMP1 overexpression in
metastatic samples highlights its role in tumor progression
and its potential as a biomarker for disease severity and
metastatic risk. Further studies are needed to validate its
clinical utility.

The next phase of our study focused on identifying
key transcription factors that regulate the final six
genes selected in the previous step, which serve as both
prognostic markers and therapeutic targets. This step
was crucial for uncovering the downstream regulatory
mechanisms governing the expression of these genes.
E2F1 and TP63 were identified as the most significant
transcription factors modulating these genes, playing a
crucial role in regulating their expression and influencing
the molecular pathways associated with cervical cancer
progression.

E2F1 and TP63 are important players in the progression
of cervical cancer. E2F1, the one often upregulated in
high-risk HPV infections, promotes tumor growth and
migration by classical target genes, including TOP2A,
BIRC5, MDM?2, and MELK.*** Because of its central
role in cancer development, the targeting of E2F1
and downstream pathways represents potential new
therapeutic approaches. Likewise, TP63 is a member
of the p53 family with two main isoforms: TAp63 and
ANp63, with opposing impacts in a tumor. Increased
ratios of ANp63 to TAp63 expression are associated
with the progression of cervical intraepithelial neoplasia
into invasive cancers.”* In HPV-positive patients, the
degree of TP63 promoter methylation further correlates
with the severity of lesions, supporting its potential as
a diagnostic and prognostic marker." Such knowledge
further elucidates the importance of E2F1 and TP63 as
possible molecular targets for improving the diagnosis
and treatment of cervical cancer.

While our study presents promising results in
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identifying novel key genes for cervical cancer diagnosis
and prognosis through a hybrid machine learning
approach, we acknowledge certain limitations that may
affect the robustness and generalizability of our findings.
One such limitation is the relatively small sample size for
some groups, particularly the normal tissue samples. To
mitigate this, we validated our findings using multiple
external datasets, including the TCGA dataset, to ensure
the robustness and generalizability of the identified
biomarkers.

Additionally, although we performed in-silico validation
using gene expression and PPI data, our study lacks
experimental validation, which is crucial for confirming
the functional roles of the identified biomarkers in
cervical cancer progression. Further research involving
in vitro and in vivo validation of these genes is needed to
fully establish their potential as therapeutic targets.

Another consideration is the use of a single dataset as
the main dataset in our study. While this approach helped
to prevent batch effects that could arise from merging
multiple datasets, it also allowed for a more focused and
controlled analysis.”” To ensure the generalizability of our
findings, we validated the results using multiple external
datasets. This strategy mitigated potential biases and
reinforced the robustness and reliability of our results,
demonstrating the effectiveness of hybrid machine
learning algorithms in providing consistent and accurate
insights across different data sources.

Furthermore, cervical cancer is a highly heterogeneous
disease, with multiple molecular subtypes and diverse
pathways contributing to its progression. While our study
focused on key genes and pathways, it may not fully capture
the complexity of the disease. Incorporating multi-omics
data, such as genomics, proteomics, and epigenomics,
could offer a more comprehensive understanding of
cervical cancer biology and improve the identification of
more accurate biomarkers for diagnosis and prognosis.

Conclusion

In this study, we applied a hybrid machine learning
approach combining GA and SVM to identify key
genes linked to cervical cancer. Eight significant genes
(CXCL9, CTGF, ZNF704, ZEB2, SASH1, PTN, KPNA2,
and SLC5A1) were identified as potential diagnostic
biomarkers, involved in immune regulation, tumor
progression, and metastasis. The hybrid SVM-GA model
achieved 99% accuracy in classifying cancerous tissues,
demonstratingits potential for early detection. PPTanalysis
revealed 42 therapeutic targets and survival analysis
revealed prognostic genes, identifying CXCL1, DNMT1,
MMP1, MYBL2, PCNA, and RRM2 as key therapeutic
targets with a significant prognostic value. Additionally,
transcription factor analysis highlighted E2F1 and TP63
as key regulators. The identified genes and pathways offer
valuable targets for personalized treatment approaches,
with the potential to improve patient outcomes. Future

research should focus on validating these biomarkers in
larger, diverse patient populations to fully explore their
clinical utility.
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