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Introduction
Congenital sensorineural hearing loss (HL) affects ~1 
of every 1000 live births.1 This rises to 2.8 per 1000 in 
school-age children and to 3.5 per 1000 adolescents.2 In 
developed countries, it is estimated that ~80% of HL has a 
genetic etiology. After clinical evaluation, comprehensive 
genetic testing is the next best test to determine clinical 
actions and interventions, and to provide a definitive 
diagnosis. This allows for identification of the underlying 
genetic cause, facilitating tailored management strategies, 
genetic counseling, and prognosis determination. 

Genetic HL displays a vast genetic allelic and phenotypic 
spectrum.3 Currently, comprehensive genetic testing for 
HL returns positive results from a 35%‒50% diagnostic 
rate, depending on several variables such as: phenotype, 
onset, inheritance pattern, and ethnicity. This diagnostic 
rate illustrates the complexity of providing a genetic 
diagnosis, and implicates the contributions of novel genes 
to genetic HL that have yet to be identified.4 

Currently, there are more than 170 genes casually 
linked to non-syndromic hearing loss (NSHL), of which 
more than 60 are associated with autosomal dominant 

inheritance (AD) (org https://hereditaryhearingloss.
org/). Here, we add to this list by implicating MACF1 as a 
possible novel gene for postlingual progressive ADNSHL. 

Case Report
The proband presented to the genetics clinic at University 
of Social Welfare and Rehabilitation Sciences. The 
proband has an extensive family history of HL (Figure 1), 
accompanied by no other phenotypic manifestations. 
After obtaining informed consent, whole blood samples 
were collected from participating members and genomic 
DNA was extracted (Figure 1). Affected members of 
the family underwent clinical re-evaluation to rule out 
potential missed syndromic forms of HL. Pure tone 
audiometry was performed on affected individuals and 
revealed a mild sloping to severe HL. The HL is described 
as postlingual, and progressive. Individual III.3 showed a 
more severe HL in the low frequencies and may represent 
some progression of the low frequencies with age. Initially, 
the proband underwent GJB2 testing, which revealed no 
causal mutations. Subsequently, the proband underwent 
exome sequencing (ES) to determine the genetic cause 
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Abstract
Cytoskeletal dynamics, the interplay of actin, microtubules, and septins, is a highly coordinated and tightly regulated process. 
Defects in the proteins involved can result in a wide range of cellular consequences. Hearing loss is the most common sensory 
defect and exhibits extraordinary genetic and phenotypic heterogeneity. Currently, there are more than 170 genes casually linked 
to non-syndromic hearing loss (NSHL), of which more than 60 are associated with autosomal dominant inheritance. Here, we 
add to this growing number by implicating MACF1 (OMIM # 608271), as a novel candidate gene for autosomal dominant non-
syndromic hearing loss (ADNSHL). MACF1’s cytoskeleton integrator function and hair cell expression pattern lead one to believe 
that it is a necessary protein for hair cells. Many protein domains in MACF1 allow for dynamic interaction with the cytoskeleton. 
A large Iranian family segregating progressive ADNSHL was recruited for this study. The proband had bilateral mild-moderate 
sensorineural hearing loss and was negative for GJB2 mutations. After applying exome sequencing on the proband, a missense 
mutation c.1378C > T (p.His460Tyr) was found in MACF1 and co-segregated with the hearing loss in the extended family. We 
speculated that MACF1 mutations probably cause non-syndromic hearing loss inherited in an autosomal dominant manner. The 
potential functional impact of the identified variant will be investigated through further analysis. 
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of HL segregating in the family. After read mapping 
and quality filtering, the exome data was analyzed 
using a tiered approach. First, variants in genes causally 
linked to HL were reviewed and no plausible variant 
was identified, for either AD or autosomal recessive 
NSHL. Next, a broader search was employed. Variants 
were filtered based on minor allele frequency [ESP6500 
(http://evs.gs.washington.edu/EVS), ExAC (https://exac.
broadinstitute.org/), Iranome (http://www.iranome.
ir/), and gnomAD (http://gnomad.broadinstitute.org/)], 
inheritance pattern and predicted variant consequence. 
Next, variants were prioritize based on in-silico predictions 
[PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/), 
GERP + + , SIFT (http://sift-dna.org) and PhyloP) and 
classifications in public databases [OMIM (https://www.
omim.org/) and ClinVar (https://www.ncbi.nlm.nih.gov/

clinvar/)] (Figure 2) (Supplementary file 1, Table S1). 
After applying the filtering above, four variants were 

further prioritized for segregation within the extended 
family. Of these, only the heterozygote missense 
variant (GRCh37/hg19 ch:1, 39751285, NM_012090.5, 
c.1378C > T; p.His460Tyr) in MACF1co-segregated with 
the HL phenotype (Table 1; Figure S1). Forward primer: 
5’-AGACTTCTTGGCTCCCTCTG-3’ and reverse 
primer: 5’-GAGTCCCTTGTTCCTCACCT-3’ were used 
for Sanger sequencing of the detected variant. This variant 
has a minor allele frequency (MAF) 0.000004 (GnomAD_
exomes) and 0.000008 (ExAC). It has not been reported in 
Iranome which is a domestic population database. 

The histidine in position 460 was changed with tyrosine 
which is an aromatic amino acid. According to HOPE 
results (https://www3.cmbi.umcn.nl/hope/method/), 

Figure 1. Family Pedigree with Genotype of Affected and Normal Individuals (Affected individual has been shown with C/T genotype and normal individual 
with C/C). Pure tone audiometry for right and left ears of proband, proband’s father and daughter

Figure 2. Variant Filtering and Prioritization Based on In-Silico Predictions (PolyPhen2, GERP++, SIFT, and PhyloP

Total variants: 374230

High quqlity variants: 231273

MAF<0/0005: 544
(ExAC, ESP, Kaviar, Abroam, GME and HRC)

Heterozygous variants: 509

Exonic- splicing variants: 243

After exclusion of all unnecessary variants: 
168

CADD>20: 86

Good iinn  ssiilliiccoo  prediction: 26
(OMIM, ClinVar, PolyPhen2, GERP++, SIFT and PhyloP)

Candidate gene segregation study: 4

Segregation in the family: 1
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the wild-type and mutant amino acids differ in size. 
The mutant residue is bigger which might lead to local 
misfolding. The hydrophobicity of the wild-type and 
mutant residue differs. The mutation introduces a more 
hydrophobic residue at this position. This can result in 
loss of hydrogen bonds and/or disturb correct folding.

Discussion
On human Chr 1p32, the MACF1 gene is located near the 
DFNA2 dominant HL locus. It has been demonstrated that 
HL in certain DFNA2 families is caused by mutations in 
KCNQ4, which are centromeric to MACF1.5-7 No plausible 
variants in KCNQ4 were detected in the proband based on 
ES analysis. The microtubule and actin crosslinking factor 
1 (MACF1) gene encodes Actin Crosslinking Family 
Protein 7 (MACF1), a massive (~500 kDa) cytoskeletal 
crosslinking protein that interacts with F-actin and 
microtubules to shape cell morphology.6 Metazoan 
tissues have widespread expression of MACF1, indicating 
a notable degree of evolutionary conservation.8 MACF1’s 
cytoskeleton integrator function and hair cell expression 
pattern lead one to believe that it is a necessary protein 
for hair cells. The developmentally significant nature 
of microtubule and actin crosslinking factor 1 genes is 
established by the embryonic lethality of a null mutation 
in the mouse ortholog.9 Moreover, a mutation in zebrafish 
causes abnormalities in the oocyte and egg’s animal-
vegetal polarity.10 Many protein domains in MACF1 allow 
for dynamic interaction with the cytoskeleton. Direct 
contact between calponin homology 1 and 2 domains and 
F-actin is facilitated towards the N terminus. The GSR 
(Gly-Ser-Arg)-repeat domain, which also interacts with 
microtubules, the EF hand domains, which bind calcium, 
and the GAS2-related protein domain, which binds with 
microtubules and helps microtubule stabilization, are 
located close to the C-terminus.9 

Interestingly, although highly expressed, MACF1 is not 
required for normal hair cell development and maturation, 
and conditional knockout cKO mice for MACF1 have 
normal hearing at P30.11 We speculate two possibilities to 
explain the phenotype seen in humans but not the cKO 
mouse. First, it is possible that MACF1 is dispensable for 
normal hair cell development and maturation but might 
play a more important role throughout the life of the hair 
cell, and examination of its absences at P30 might not 
capture its true biological role. Second, we identified a 
missense variant which is hypothesized to act as a gain-of-
function or dominant negative and the cKO mouse is not 
a good model to recapitulate this effect. It is noteworthy 

that MACF1 lies ~1.2 Mb downstream of KCNQ4 , and no 
plausible variants were detected in the exonic regions of 
KNCQ4.

Currently, variants in MACF1 are causally linked to 
Lissencephaly 9 with complex brainstem malformation 
(LIS9). LIS9 is an autosomal dominant form of 
lissencephaly, which is a disorder that affects the 
development of the brain’s cortex. This disorder is 
characterized by the absence or thickening of the 
normal six-layered cortex, leading to disorganization. 
Clinically, LIS9 is associated with global developmental 
delay that is noticeable from infancy. Individuals with 
LIS9 also experience impaired intellectual development, 
often resulting in poor or absent speech. Additionally, 
abnormal or involuntary movements may be present. 
Brain imaging reveals malformation of the brainstem, 
as well as the presence of pachygyria and lissencephaly 
(MIM:618325). As it was obvious in our family, no 
syndrome was detected and only HL was found in the 
affected individuals. 

Conclusion
In conclusion, we report a novel candidate gene (MACF1) 
for autosomal dominant non-syndromic hearing loss 
(ADNSHL). Functional studies are needed to understand 
the impact of the p.His460Tyr variant on MACF1 
function and how this variant results in HL. Additionally, 
identifying more families segregating NSHL and variants 
in MACF1 will help provide a better understanding of 
MACF1 phenotypic spectrum. Finally, we have expended 
the phenotypic spectrum of MACF1 to include ADNSHL. 
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Table 1. Databases and In Silico Algorithms for MACF1 and Three Other Candidate Variants Undergoing Segregation Analysis

Gene Variant CADD GERP SIFT Phylop Polyphen Franklin InterVar Clinvar MIM# Segregation

MACF1 c.1378C > T 23.3 5.93 0.003 3.72 — VUS Likely pathogenic — 608271 Yes

DNAH14 c.1990-1991insTT — — — — — Likely pathogenic — — 603341 No

USP6 c.G2763A 38 2.91 — 9.74 — VUS VUS — 604334 No

MUC16 c.40674-40677del — — — — — VUS — — 606154 No
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