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Abstract
Background: Disruptions in sleep related to mealtime may contribute to gut microbial imbalances, and put individuals at higher 
risk for metabolic diseases. The aim of this pilot study was to investigate the relationships between late-night eating habits and 
sleep quality and duration, with gut microbiota (GM) profiles. 
Methods: In this cross-sectional study, 36 men referred to a clinic were enrolled. In addition to demographic information, each 
participant completed questionnaires regarding medical history, physical activity, late-night eating habits, sleep quality and sleep 
duration. The scores from these questionnaires were used to categorize study participants into the following groups: sleep quality 
(good or poor), late-night eating (yes or no) and sleep duration (<7 or ≥7 hours). Five grams of stool was also obtained from each 
participant for GM profiling analysis by sequencing. 
Results: The mean age of the study population was 42.1 ± 1.6 years. Firmicutes and Actinobacteria were the two dominant phyla 
present in all participant samples. Differences in the relative abundance of GM at each taxonomic rank between study groups 
were insignificant. Only Erysipelotrichales at the order level were found to be significantly different between individuals who had 
late-night eating habits and those who did not (P & q < 0.05). No other parameter demonstrated a significant difference in GM 
profiles of participants.
Conclusion: In this pilot study, we found Erysipelotrichales to be more abundant in individuals with late-night eating habits. Studies 
with higher sample sizes are warranted to better delineate the possible effects of time of eating on microbial composition.
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Introduction
Circadian rhythms (CR) represent the body’s 24-hour 
internal clock that regulates sleep-wake cycles in response 
to changes in light and darkness of the environment.1 
Recently, several studies have shown that any disruption 
in CR, including feeding behavior and sleep patterns, 
can play a crucial role in human health as relates to 
the development of a wide spectrum of diseases, such 
as hypertension, diabetes, and cancers.2-5 The effect 
of CR disruption on the gut microbiome (GM) is still 
controversial and widely discussed by researchers around 
the world.6 Host CR does influence GM composition, 
which is conversely critical for the regulation of circadian 
pathways.7,8 The interaction between GM and CR can 
affect host physiological processes such as the immune 
response, endocrine regulation, and metabolism, 
subsequently affecting susceptibility to several diseases.9-11 

Recent studies have shown that GM and their 

metabolites change rhythmically throughout the day 
and night and are often influenced by the feeding-fasting 
cycle, feeding behavior, and sleep-wake cycle.10,12,13 
Association between sleep patterns and GM composition 
has been studied extensively, where microbiome diversity 
has been associated with sleep quality as well as sleep 
time.13,14 Furthermore, it has been shown that changes in 
sleep duration can lead to changes in GM. Besides sleep, 
various human and animal studies have also evaluated the 
association between dietary behaviors and microbiome 
composition showing that feeding behaviors such as meal 
timing and frequency, meal skipping, and duration of 
overnight fast may affect the abundance and composition 
of GM.12,15,16 The aim of this study was to investigate the 
relationship between sleeping patterns, eating behaviors 
and GM profiles. We hypothesized that GM composition 
will be different in subjects with good versus poor sleep 
quality, shorter (< 7 hours) versus longer (≥ 7 hours) sleep 
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duration and late-night versus not eating behaviors. 

Patients and Methods
Study Population
Thirty-six men, referred to the Tehran Gastroenterology 
and Hepatology Clinic, were enrolled in the study. Given 
that animal and human studies have shown sex-related 
differences in gut microbiome, only men were included 
in this pilot, to limit confounding factors within the 
already small sample size.17 Males older than 18 years of 
age and willing to participate were included in the study, 
unless they met any of the following exclusion criteria: 
a history of autoimmune, metabolic, or gastrointestinal 
diseases, surgeries resulting in a change in gut anatomy, 
alcohol use at ≥40 g/wk, current use of corticosteroids or 
probiotics, recent use of vitamin E, fish oil supplements 
(within 6 months of recruitment) or antibiotics (within 6 
weeks of recruitment) and finally, dieting within 1 month 
of recruitment. Upon entering the study, all participants 
signed a written informed consent. 

Data and Sample Collection
Using a 34-item questionnaire, demographic information 
including age, past and present medical history, surgical 
history, history of alcohol consumption, and smoking 
status were collected. Body mass index (BMI) and 
waist-to-hip ratio (WHR) were also measured and 
recorded. Table l summarizes this information for the 
study participants. To assess CR, a researcher-designed 
questionnaire was completed for workdays and weekends/
holidays, separately. This novel questionnaire, developed 
and approved through discussions by a five-member 
expert panel in the field of CR, includes 11 items 
regarding the time of meals as well as wake and sleep 
times. Indices on sleep duration (<7 or ≥7 hours) and late-
night eating habits defined as eating ≤2 hours before sleep 
(yes or no) were calculated based on this questionnaire 
(Supplementary file 1, Table S1).

The Pittsburgh Sleep Quality Index (PSQI), previously 
validated in Farsi (Persian), was also measured for 
participants. The PSQI consists of 19 items to assess the 
quality of sleep in the month prior to its completion. Sleep 
quality is determined through the evaluation of various 
factors, including latency in falling sleep, duration of 
sleep, sleep disturbances, habitual sleep efficiency, use of 
sleeping medication, and daytime dysfunction.18

To measure dietary intake, a 90-item qualitative 
food frequency questionnaire (FFQ) was completed. 
Individuals were asked about their usual consumption of 
common food items over the year prior to the interview. 
Nutrient information was obtained using the United States 
Department of Agriculture (USDA) food composition 
databases.19 

Clinical chemistries including serum fasting blood 
sugar (FBS), total cholesterol, triglycerides (TG), very-
low-density lipoprotein (VLDL), high-density lipoprotein 
(HDL), insulin and hemoglobin A1c (HbA1c) levels were 

measured by standard kits. Approximately 5 grams of 
stool was collected from each participant and stored into 
a sterile 20-milliliter polypropylene fecal container and 
immediately frozen to -80°C. 

Microbial Analyses 
Fecal bacterial DNA was extracted using the FavorPrep 
TM Stool DNA Isolation Mini Kits (FAVORGEN, 
Taiwan) following the manufacturer’s protocol. DNA 
concentrations of samples were evaluated by Nanodrop 
(IMPLEN, Germany). After extraction, the V4 regions 
of microbial small subunit ribosomal RNA genes were 
amplified with primers CS1_515F and CS2_806R using 
Access Array Barcode Library for Illumina (Fluidigm, 
South San Francisco, CA; Item# 100-4876). The amplicons 
were produced in two steps.20 Fluidigm sequencing 
primers to target the CS1 and CS2 linker regions were 
used to initiate sequencing. Sequencing was performed 
at the Chicago Genome Research Core (GRC) within 
the Research Resources Center (RRC), University of 
Illinois, Chicago, USA. The standard QIIME pipeline, as 
a high-throughput sequencing technique, was modified 
to generate taxonomic summaries using sub-Operational 
Taxonomic Units (sub-OUTs).21,22 All sequences with an 
abundance of ≥10 counts were designated seed sequences. 
USEARCH was then used to find the nearest seed 
sequence for any non-seed sequence with a minimum 
identity threshold of 97%. For any non-seed sequence that 
matched a seed sequence, its counts were merged with the 
seed sequence counts.23 Taxonomic annotations for seed 
and unmatched non-seed sequences were assigned using 
the USEARCH and Silva v132 reference with a minimum 
similarity threshold of 90%.23,24 After quality filtering, beta 
and alpha diversity were calculated.25,26 

Statistical Analysis
Descriptive analyses were conducted using Stata version 
12. Mean (SD) and median (range) were calculated for 
normal and skewed variables, respectively. Differential 
analyses of taxa as compared with experimental covariates 
i.e., sleep quality, late-night eating, and sleep duration were 
performed using R statistical software, edgeR package, 
on relative abundance.27 Prior to analysis, taxa with less 
than 0.1% of the total sequence abundance were removed. 
Normalized data were tested using the Wilcoxon test by 
experimental covariates. P values were corrected using 
the Benjamini-Hochberg false discovery rate (FDR) 
correction. A corrected P value (q value) less than 0.05 
was considered statistically significant. 

For alpha diversity (the richness of different species 
in a sample), Simpson indices were calculated using 
default parameters in the vegan library of R software.25 
The resulting Simpson indices were then modelled 
with the sample covariates using a generalized linear 
model assuming a Gaussian distribution and tested for 
significance by t test. Plots were generated through the 
ggplot2 library in R.26 To estimate beta diversity (different 
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microbial communities in different environments), Bray-
Curtis indices were calculated with default parameters 
in R using the vegan library.25 The resulting dissimilarity 
indices were modelled and tested for significance with 
the sample covariates using the ADONIS test. Plots were 
generated in R using the ggplot2 library.26 

Results
Thirty-six participants were recruited for this pilot study. 
The mean age of study participants was 42.1 ± 1.6 years. The 
descriptive characteristics of participants are presented in 
Table 1. Results obtained from each questionnaire were 
used to categorize individuals into various groups and 
study variables were assessed among them. Based on the 
PSQI results, participants were divided into the following 
two groups: those with good sleep quality (n = 9) and 
those with poor sleep quality (n = 27). BMI was the only 
variable that was significantly different between the two 
sleep quality groups (P ˂ 0.05). The sleep duration index 
extracted from the CR questionnaire was the basis of the 
second group categorizations including: individuals with 
less than 7 hours of sleep (n = 23), and those with ≥ 7 hours 
(n = 13). The third group classification, also based on the 
CR questionnaire, divided individuals into those with (n 
= 13) and without (n = 23) late-night eating behaviors. No 

other significant differences in baseline variables (Table 1) 
were observed between individuals for any of these two 
category groups. 

Microbial Composition
Beta and alpha diversities at the phyla level were assessed 
with “ADONIS” and “Simpson” methods, respectively. 
As shown in Figures 1 and 2, there was no significant 
difference at the phyla levels between the study groups. 
The dominant phyla present in all participant samples 
were Firmicutes and Actinobacteria. The distribution of 
dominant Phyla in the participants based on study groups 
is shown in Figure 3. The relative abundance of GM at 
the phyla,  class, order, family, genus, and species levels 
across study groups was insignificant; with the exception 
of Erysipelotrichales (order), which were significantly 
more abundant (mean ± SD, 0.05 ± 0.2 vs. 0.02 ± 0.03) in 
individuals with late-night eating behaviors compared to 
those without (P = 2.9306E-06, q = 7.91262E-05).

Discussion
Our study has demonstrated for the first time that 
Erysipelotrichales were more common in individuals who 
had late-night eating behaviors, compared to those who 
did not. Our results showed no significant differences 

Table 1. Descriptive Characteristics of the Participants

Variables 
Sleep Quality Late-Night Eating Sleep Duration Total 

Good (n = 9) Poor (n = 27) Yes (n = 13) No (n = 23) <7 (n = 23) ≥7 (n = 13) n = 36

Age, (mean ± SD), years 37.7±2.4 43.6±2.0 40.08±3.0 43.2±2.0 40.6±2.0 44.7±2.7 42.1±1.6

BMI, (mean ± SD), (kg/m2) 32.5±3.8* 26.1±0.7* 27.8±2.3 27.7±1.3 28.1±1.7 27.0±1.1 27.7±1.2

WHR, (mean ± SD) 0.95±0.02 0.94±0.02 0.96±0.2 0.92±0.02 0.93±0.01 0.95±0.03 0.94±0.01

Systolic blood pressure, 
(mean ± SD)

114.5±4.8 116.8±3.1 122.3±5.7 112.6±2.3 117.0±3.7 114.6±3.0 116.1±2.6

Diastolic blood pressure, 
(mean ± SD)

77.8±4.0 79.9±2.4 82.3±4.6 76.5±1.7 79.6±2.5 77.0±3.3 78.6±2.0

Calorie intake, (mean ± SD)/
in a week

25355.5±1256.4 24381.5±657.0 24558.0±808.3 24663.0±796.5 24533.0±784.5 24787.7±843.6 24625.0±579.4

PHA (%)

Low 11.1 22.2 23.1 17.4 13.0 30.8 19.4

Medium 77.8 59.3 61.5 65.2 69.6 53.8 63.9

High 11.1 18.5 15.4 17.4 17.4 15.4 16.7

Smoking (%)
Yes 44.4 29.6 23.1 39.1 34.8 30.8 33.3

No 55.6 70.4 76.9 60.9 65.2 69.2 66.7

Insulin, median (min-max), 
micIU/mL

8.4 
(5.7–23.7)

9.7 
(3.5–15.0)

8.7 
(4.4–23.7)

9.7
(3.5–23.0)

8.7
(3.5–23.7)

9.7
(4.4–14.3)

9.7
(3.5–23.7)

FBS, median (min-max), 
mg/dL

91.0 
(86.0–224.0)

93. 0
 (72. 0–198. 0)

92.0 
(88.0–107.0)

93.0
(72.0–224.0)

93.0
(72.0–224.0)

92.0
(88.0–198.0)

92.5
 (72.0–224. 0)

Cholesterol, median (min-
max), mg/dL

168.0 
(104.0–200.0)

166.0 
(122.0–239.0)

159.0 
(128.0–191.0)

168.0
(104.0–239.0)

168.0
(104.0–239.0)

166.0
(148.0–201.0)

167.0 
(104.0–239.0)

TG, median (min-max), 
mg/dL

100.0
 (76.0–294.0)

108.0 
(45.0–386.0)

113.0
 (59.0–294.0)

100.0
(45.0–386.0)

108.0
(56.0–386.0)

99.0
(45.0–294.0)

106.5
(45.0–386.0)

HDL, median (min-max), 
mg/dL

36.0 
(29.0–44.0)

33.0 
(26.0–59.0)

31.0 
(27.0–41.0)

35.0
(26.0–59.0)

34.0
(26.0–59.0)

33.0
(28.0–49.0)

33.5
(26.0–59.0)

VLDL, median (min-max), 
IU/L

20.0 
(15.2–58.8)

21.6 
(9.0–77.2)

22.6 
(11.8–58.8)

20.0
(9.0–77.2)

21.6
(11.2–77.2)

19.8
(9.0–58.8)

21.3
(9.0–77.2)

HbA1C, median (min-max), 
%

5.3 
(4.7–9.7)

5.2 
(4.5–8.8)

5.0
 (4.5–5.6)

5.4
(4.7–9.7)

5.2
(4.5–9.7)

5.3
(4.8–8.8)

5.2
(4.5–9.7)

BMI, Body mass index; WHR, Waist to hip ratio; PHA, Physical Activity; FBS, Fasting blood sugar; TG, Triglycerides; HDL, High-density lipoprotein; VLDL, Very-
low-density lipoprotein; HBA1c, Hemoglobin A1c. 
*P value less than 0.05.
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in GM at the levels of alpha and beta diversity between 
the participants who sleep less than 7 hours compared 
to those who sleep more than 7 hours. We also found no 
differences in GM diversity between participants who 
reported having good sleep quality versus those who 
were scored as having poorer sleep quality. Previous 
studies have shown late-night eating to be associated with 
obesity,28-30 and bacteria of the family Erysipelotrichaceae 
were reported to be associated with metabolic disorders 
such as obesity.31-32 Zhang et al also reported a population 
shift for Erysipelotrichaceae in post-gastric-bypass obese 
individuals, indicating the GM alteration due to surgery 
and differences in food consumption and digestion 
perturbations.33 In addition, Kaczmarek et al demonstrated 
that the GM profiles for a number of gut bacteria exhibited 
an oscillatory behavior in response to the time of eating.12 
For instance, it has been observed that bacterial quantity in 
mice peaks at 11 pm (with a maximum in the Bacteroidetes 
population) and reaches a low at 7 am (with a maximum 
in the  Firmicutes  population), suggesting presence of a 
“bacterial clock” which is orchestrated in tandem with the 
host clock.34 

All groups in the present study were characterized by 
a similar distribution of age, past and present medical 
history, surgical history, history of alcohol consumption, 
smoking and waist to hip ratio, allowing for any differences 

observed in GM to be attributed to the comparison 
groups. Our main limitations were the small sample size 
and the assessment of only fecal GM and not the mucosal-
related microbiota. Although mucosal specimens allow 
for better detection of bacteria, fecal specimens are non-
invasive and easily obtainable, therefore suitable samples 
for evaluating GM profiles for this type of study.35,36 
Studies on GM diversity in different populations improve 
our general knowledge about the effects of GM and their 
related metabolic pathways, on human health, as well as 
their association with a variety of diseases. The resultant 
knowledge can be generalized to inform for translation 
into treatments for patients via modulating the GM 
profile. Understanding the association between GM and 
CR holds the potential for microbiota-directed therapies 
such as use of probiotics and prebiotics to improve the 
effects of disrupted circadian homeostasis.

In conclusion, in this study, we aimed to investigate 
the relationship between circadian phenotypes (sleeping 
and eating behaviors) with profiles of GM. We found 
that Erysipelotrichales, of firmicutes, previously linked to 
metabolic disorders and obesity, are more abundant in 
individuals who had late-night eating habits. This provides 
a targetable mechanism to ameliorate metabolically-
associated diseases in high-risk individuals. Further 
studies with larger sample sizes are needed to confirm our 

Figure 1. Non-metric Multi-dimensional Scaling (NMDS) plot of Bray-Curtis Dissimilarity Indices Computed Using the Taxonomic Summary Data at the Phyla 
Level. Points are colored based on sample group. (A) Late-night eating, (B) Sleep quality and (C) Sleep duration. Beta diversity was not significantly different at 
the phyla level.

Figure 2. Dot and Box Plots of Alpha Diversity as Compared with Sample Groups. Points are colored based on sample group. (A) Late-night eating, (B) Sleep 
quality and (C) Sleep duration. Alpha diversity was not significantly different at the phyla level.
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results.
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