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Introduction

Observational studies are common in epidemiology. These 
studies generally involve comparing the risk for groups of 
subjects experiencing different levels of exposure. There 

is a possibility that an important factor that affects the distribution 
of outcome may differ between the comparison groups. It is said 
that the effect of exposure is confounded because this effect is 
partially due to the difference between groups.1 More formally, 
the effect of exposure on outcome is distorted due to a third factor 
that is related to both exposure and outcome. 

Common methods to control confounding are regression 
(logistic, Poisson regression, and Cox regression, i.e. generalized 

Standardization methods have been used in medical research for 
a long time.2–4 These methods are used to control confounding, 
and one can estimate causal parameters of interest using 
standardization.5–7

groups within strata. A consequence of this method is that each 
individual stratum may contain too little data to be informative.1 
With the increase in the number of confounders, this method 
is prone to sparse-data problem (it occurs when there are few 
or no study participants at some combinations of the outcome, 
exposure, and covariates)8–10 and unstable estimates. Because of 
this problem, it is rarely used in practice.

Regression analysis overcomes the stated problem in 

the relationship between confounding variables, exposure and 
outcome. Modeling binary outcome is usually achieved through 
logistic regression, which reports odds ratio as an effect measure. 
The odds ratio is known to be non-collapsible, i.e. in the absence of 

the crude OR.11–14 Also, the odds ratio is biologically interpretable 
only when it is an estimate of the risk ratio or rate ratio. Moreover, 
logistic regression is not suggested when the outcome is rare and 
there are many confounding variables.15

Limitations of conventional regression analysis 
I. These methods produce conditional effect measure, not 

population average. In most studies, researchers have a marginal 
or population average treatment effect in mind.16 Conditional 
models report the individual level effects while marginal models 
report population level effects. The intervention level for many 
exposures such as those including environmental exposures (e.g. 
air pollution) is population.17 In this situation, we should use 
marginal causal models and report population-level estimates. 

II. When the causal effect of an exposure on an event varies 
across the levels of a third variable, we have interaction or 

18 The traditional statistical methods for 
controlling confounding cannot handle the situation where 
the aim is to estimate the effect of exposure on the outcome of 
interest in the presence of variables which are simultaneously 

in reporting adjusted effect estimates using traditional methods is 
no interaction between the exposure and confounders.19 Marginal 
causal estimators have causal interpretations (indicating that 
outcome is the result of the occurrence/ presence  of the exposure)  
for the total population even in the presence of interaction.20

III. In a longitudinal study, with repeated measurements on the 
exposure and covariates, the covariates could be confounders for 
next exposure and simultaneously intermediates for the exposure 

Abstract

an effect which is the population average and has marginal causal interpretation.

Keywords: 

Cite this article as: Gharibzadeh S, Mohammad K, Rahimiforoushani A, Amouzegar A, Mansournia MA. Standardization as a tool for causal inference in medical 
research. Arch Iran Med. 2016; 19(9): 666 – 670.

Research Methods

Standardization as a Tool for Causal Inference in Medical Research
Safoora Gharibzadeh PhD1, Kazem Mohammad PhD1, Abbas Rahimiforoushani PhD1, Atieh Amouzegar MD2, Mohammad Ali 
Mansournia MD MPH PhD

 1Department of Epidemiology and Biostatistics, School 
of Public Health, Tehran University of Medical Sciences, Tehran, I. R. of Iran, 
2Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid 
Beheshti University of Medical Sciences, Tehran, I. R. of Iran.
•Corresponding author and reprints: Mohammad Ali Mansournia MD MPH 
PhD, Department of Epidemiology and Biostatistics, School of Public Health, 
Tehran University of Medical Sciences, Tehran, I. R. of Iran. Tel: +98-21-
42933046, E-mail: Mansournia_ma@yahoo.com.
Accepted for publication: 3 July 2016



Archives of Iranian Medicine, Volume 19, Number 9, September 2016 667

S. Gharibzadeh, K. Mohammad, A. Rahimiforoushani, et al. 

of the previous time.  In this situation, standard approaches for 
adjustment of confounding are biased.21–23

Standardization involves the calculation of numbers of expected 
events (e.g. disease/death) which are compared to the number of 
observed events. With total population as reference, the exposure-

of risk across strata of C with weights equal to the proportion of 
individuals in each stratum of C.19

Suppose that outcome and exposure are binary, and individuals 
are either exposed or unexposed. In addition to depending on 
exposure, risks depend on a binary confounder: 

Standardized risk in the exposed equals to the probability of 
disease in different levels of third variable (C) weighted by the 
distribution of C (the weights equal to 900

2000  and 1100
2000  for C = 1 and 

C = 0, respectively), the calculation for standardized risk in the 
unexposed was done similarly. 

Standardized Risk in the exposed =
194 900 6 1100* * 0.1256
800 2000 200 2000

Standardized Risk in the unexposed =
24 900 26 1100* * 0.1238

100 2000 900 2000

Standardized RR =
0.1256 1.01
0.1238

Generally, in standardization, we compute the risk in exposed 
and unexposed groups in different levels of confounder and then 
weigh these risks using the proportion of individuals in each level 
of C. 

by confounders, the sparse-data problem will occur when 

unstable estimate.24 To overcome this instability, model-based 
standardization methods have been proposed.25,26 If one uses a 
correct statistical model, MBS can estimate a standardized, or 
unconfounded, population-averaged effect.11,27

When the number of confounder levels increase, or there is more 
than one confounder some of which are continuous, we cannot 
tabulate the data and we have to use regression modeling. Model-
based standardization usually starts with regular regression 
modeling. Using regression modeling, we estimate the risk if all 
participants were exposed or all of them were unexposed and then 
average these risks over the distribution of confounders. 

Parametric g-formula or covariate standardization is the 
generalization of standardization for time-varying exposures and 
confounders.28 This method relies on the same assumptions (no 
unmeasured confounding, no measurement error and no model 

29

in which the data is copied three times. Each individual is 
simultaneously considered as treated, untreated and in its own 
treatment status. Then, one should run a suitable regression 
model (Linear/ Logistic) for the treatment and confounders on the 
original data set. The third step is prediction, using the parameter 

estimates from the regression model, one can predict the outcome 
values for each treated and untreated with the covariates equal 
to the covariates in the original data, and average over the L 
to compute mean outcome/ risk in the exposed and unexposed 
groups. i.e. ˆ ( | 1, )

l
E D E L l  for exposed and ˆ ( | 0, )

l
E D E L l  for 

unexposed.
The overall representation of MBS is as follows:

ˆ ( | , )
l

E D E e L l

n

Where L is a set of confounders that we should adjust for them, 
andE( | , )D E e L l is the general form of the regression. When the 
outcome is binary (e.g. logistic regression), the expectation equals 
probability.

Rosenbaum and Rubin developed propensity score methods to 
make causal inferences in observational data.7 Propensity score 
is the conditional probability of receiving treatment (or being 
exposed) given the observed covariates.30 Methods based on the 
propensity score (PS) have become a common approach in causal 
inference and medical research.7,31–51

Assuming that there is no unmeasured confounding, by 
adjustment for the propensity scores, one can achieve an 
unbiased estimate of the treatment/exposure effect. Adjustment 
for the propensity score is typically done through matching, 

covariate adjustment.32,47,52

As an alternative to covariate standardization, propensity score 
standardization was recently proposed by Hernán and Robins. 
The general strategy is the same as MBS except that in outcome 
modeling, L is replaced by propensity score. PS-standardization 
is a semi-parametric standardization that uses the total group 
(exposed + unexposed) as the standard. 

After estimating propensity score using logistic regression, we 
compute the population-average risk difference by standardizing 
the conditional expectation of the outcome to the empirical 
distribution of propensity score:

ˆ ( | , )
s

E D E e PS s

n

Where E(D/E=e1PS=s) is estimated using logistic regression 
with exposure and propensity score as covariates. In both methods, 

non-parametric bootstrap with n = 200 bootstrapped samples.

To illustrate application of these standardization methods with 
real data, we studied the effect of categorized waist circumference 
(WC) (cm) on the incident of diabetes after 10 years of follow-up 
(median follow up time was 8.7 years) in the presence of these 
confounders: hypertension, hyperlipidemia, body mass index 
(BMI) (kg/m2), age (years), sex, and education. We excluded pre-
diabetes and diagnosed diabetes at baseline. Pre-diabetic patients 

125.9 mg/dL. 
This study was conducted within the framework of Tehran 
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Thyroid Study (TTS). It is a prospective population-based cohort 
study, performed on the residents of district 13 of Tehran with the 
aim of evaluating the prevalence and natural course of thyroid 
diseases and their long term consequences in terms of ischemic 
heart disease and cardiovascular and all-cause mortality in the 

Details of the study methods have been previously described.53, 54

Variables

considered as total cholesterol (TC) greater than 200 mg/dL. 
Education has three categories: primary, secondary, and higher. 

Results

50 60.  0.0482
673 2306

Crude RD

Average risk in the exposed equals 0.03811 and 0.04543 using 
parametric g-formula and propensity score standardization, 
respectively. Average risk in the unexposed equals 0.03604 
and 0.03209 using parametric g-formula and propensity score 
standardization, respectively. 

When we have a rare outcome (prevalence less than 5%) and 
exposure is frequent, the estimated risk difference from PS-
standardization is more reliable.15 So, in this example, we report 
standardized RD equal to 0.0133. The authors tested this situation 
in another simulation study that compared these two standardized 
estimates in different scenarios. 

Discussion

In this paper, we have explained model-based standardization 
methods. If we want to compare the health status of two 
populations and we have one or two categorical confounding 

variables with few levels, we suggest traditional standardization 
without modeling. When there are many variables and some of 
them are continuous, model-based standardization should be used.

Overall, based on the results of different studies and the 
authors’ simulation study, covariate standardization works 
better in different situations with two exceptions: 1) when we 
have enough information about the mechanism of exposure, 
such as in pharmaco-epidemiology settings, where the exposure 
is known by drug indication, PS-standardization is preferred 
to covariate standardization; 2) when the outcome is rare and 
exposure is frequent, exposure modeling (PS-standardization) 
is suggested, because in this situation, there may be too little 
information to estimate the relationship between outcome and pre-
treatment variables, but plenty of data to estimate the relationship 
between treatment assignment and these variables.15

In a point-treatment study, control for confounding is 
traditionally accomplished by modeling the probability of 
outcome as a function of treatment and pre-treatment covariates. 
With a time-varying exposure, traditional methods such as GEE 
and time-dependent Cox regression may be biased if time-varying 
covariates are simultaneously confounders and intermediates.21,22 
For example, if we consider the time-varying effect of physical 
activity on knee pain in patients with osteoarthritis, measurement 
of BMI before physical activity is a confounder and the BMI after 
physical activity is a mediator for this effect.55

Binary outcome is common in randomized control trials and 
cohort studies. If the risk ratio is the effect measure of interest, 
using logistic regression, one can report the odds ratio as a 
measure of association and use it as approximation of risk ratio 
when the outcome is rare.56 Risk ratio is known to be collapsible 
and easy to interpret. When the outcome is common (> 10%), the 
adjusted odds ratio derived from the logistic regression can no 
longer approximate the risk ratio of interest.57 There are several 
alternatives that are suggested for modeling the adjusted risk ratio 
such as Log-binomial regression in this situation.58 But this model 
has convergence problem; using standardization methods that are 
described in this article, one can estimate the risk in the exposed 
and in the unexposed, and then compute the risk ratio. However, 
we should notice that this risk ratio is a marginal effect, but using 
Log-binomial regression, we achieve the conditional risk ratio. 

Exposure
C = 1 C = 0 Pooled/Crude

D = 1 D = 0 Total D = 1 D = 0 Total D = 1 D = 0 Total
E = 1 194 606 800 6 194 200 200 800 1000
E = 0 24 76 100 26 874 900 50 950 1000
Total RR = 1.01 RR = 1.04 RR = 4.0

Table 1. A population with Exposure E, Disease D, and confounding variable C

Diabetic Non-Diabetic

50 623
Unexposed (WC < 95) 60 2246

Table 2. Cross-tabulation of Exposure and Disease

Method RD 95% CI
Parametric g-formula 0.0020 0.0004–0.0036
PS-standardization 0.0133 -0.0108–0.0374

Table 3.
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Recommendations for researchers
When our aim is to estimate population average effect of 

exposure/treatment, model-based standardization is one of the 
best approaches, which can be done in two ways: covariate 

step, the researchers should check the prevalence of exposure and 
outcome in the population and then if the outcome is rare and 
exposure is frequent, they should report the result of propensity 
score standardization, otherwise covariate standardization is 
preferred. These methods can be used in prospective studies, such 
as cohort and RCT. 
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