Logo-aim
Arch Iran Med. 2024;27(10): 551-562.
doi: 10.34172/aim.31269
  Abstract View: 167
  PDF Download: 130

Original Article

Machine-Learning Application for Predicting Metabolic Dysfunction-Associated Steatotic Liver Disease Using Laboratory and Body Composition Indicators

Fatemeh Masaebi 1 ORCID logo, Mehdi Azizmohammad Looha 2, Morteza Mohammadzadeh 3, Vida Pahlevani 4, Mojtaba Farjam 5, Farid Zayeri 6* ORCID logo, Reza Homayounfar 7* ORCID logo

1 Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
4 Department of Biostatistics, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
5 Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
6 Proteomics Research Center and Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
7 National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
*Corresponding Authors: Farid Zayeri, Email: fzayeri@gmail.com; Reza Homayounfar, Email: r_homayounfar@yahoo.com

Abstract

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a significant global health burden without established curative therapies. Early detection and preventive strategies are crucial for effective MASLD management. This study aimed to develop and validate machine-learning (ML) algorithms for accurate MASLD screening in a geographically diverse, large-scale population.

Methods: Data from the prospective Fasa Cohort Study, initiated in rural Fars province, Iran (March 2014), were employed for this purpose. The required data were collected using blood tests, questionnaires, liver ultrasonography, and physical examinations. A two-step approach identified key predictors from over 100 variables: (1) statistical selection using mean decrease Gini in random forest and (2) incorporation of clinical expertise for alignment with known MASLD risk factors. The hold-out validation approach (with a 70/30 train/validation split) was utilized, along with 5-fold cross-validation on the validation set. Logistic regression, Naïve Bayes, support vector machine, and light gradient-boosting machine (LightGBM) algorithms were compared for model construction with the same input variables based on area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy.

Results: A total of 6,180 adults (52.7% female) were included in the study, categorized into 4816 non-MASLD and 1364 MASLD cases with a mean age (±standard deviation [SD]) of 48.12 (±9.61) and 49.47 (±9.15) years, respectively. Logistic regression outperformed other ML algorithms, achieving an accuracy of 0.88 (95% confidence interval [CI]: 0.86-0.89) and an AUC of 0.92 (95% CI: 0.90-0.93). Among more than 100 variables, the key predictors included waist circumference, body mass index (BMI), hip circumference, wrist circumference, alanine aminotransferase levels, cholesterol, glucose, high-density lipoprotein, and blood pressure.

Conclusion: Integration of ML in MASLD management holds significant promise, particularly in resource-limited rural settings. Additionally, the relative importance assigned to each predictor, particularly prominent contributors such as waist circumference and BMI, offers valuable insights into MASLD prevention, diagnosis, and treatment strategies.


Cite this article as: Masaebi F, Azizmohammad Looha M, Mohammadzadeh M, Pahlevani V, Farjam M, Zayeri F, et al. Machine-learning application for predicting metabolic dysfunction-associated steatotic liver disease using laboratory and body composition indicators. Arch Iran Med. 2024;27(10):551-562. doi: 10.34172/aim.31269
First Name
 
Last Name
 
Email Address
 
Comments
 
Security code


Abstract View: 168

Your browser does not support the canvas element.


PDF Download: 130

Your browser does not support the canvas element.

Submitted: 12 May 2024
Accepted: 26 Jun 2024
ePublished: 01 Oct 2024
EndNote EndNote

(Enw Format - Win & Mac)

BibTeX BibTeX

(Bib Format - Win & Mac)

Bookends Bookends

(Ris Format - Mac only)

EasyBib EasyBib

(Ris Format - Win & Mac)

Medlars Medlars

(Txt Format - Win & Mac)

Mendeley Web Mendeley Web
Mendeley Mendeley

(Ris Format - Win & Mac)

Papers Papers

(Ris Format - Win & Mac)

ProCite ProCite

(Ris Format - Win & Mac)

Reference Manager Reference Manager

(Ris Format - Win only)

Refworks Refworks

(Refworks Format - Win & Mac)

Zotero Zotero

(Ris Format - Firefox Plugin)