Abstract
INTRODUCTION: Rabies is an acute viral disease that causes encephalomyelitis in mammals and human. The only way to prevent this disease is through vaccination before or after exposure. The aim of this study is to evaluate the efficiency of the Pasteur virus (PV) minigenome, using PV strain.
MATERIALS AND METHODS: Enhanced Green Fluorescent Protein (EGFP) sequence was placed between the designed necessary elements (Hammerhead, HDV ribozyme, 3’ Leader, and 5’ Trailer sequences), which resemble the rabies virus PV strain (PV2061) genome and anti-genome. These constructs were placed between T7 polymerase promoter and T7 polymerase terminator sequences. The accuracy of the minigenome was confirmed by the expression of EGFP using the helper virus in T7-BHK cell line.
RESULTS: The viral necessary elements of positive and negative sense strands were evaluated for the ability of EGFP expression in the presence of the helper virus. While the positive strand showed background results, no EGFP background was observed in the negative strand application.
CONCLUSION: Establishment of minigenome system does not require advanced biosafety levels. Furthermore, using minigenome system eliminates many potential confounding factors that may be present in coding regions of the genome. Use of the minigenome system is easier and more feasible than the full genome rescue of the virus. This study successfully shows the efficiency of the constructed rabies virus minigenome in expression of inserted gene.