Supplementary file 2. WinBUGS code.

Bayesian Poisson model with adjustment for unmeasured confounder (insufficient knowledge about HIV transmission routes) based on the second expert's priors.

α : NBT for HIV; β : high risk injection; γ : history of imprisonment in the past 3 months; δ : age; ϵ : education; η : gender; λ : history of imprisonment in the past 3 months <u>at baseline</u>; φ : HIV testing at baseline

```
model {
for(i in 1:N) {
\alpha[i] \sim dpois(mu[i])
log(mu[i]) \le b0 + b1 * \beta[i] + b2 * \gamma[i] + b3 * \delta[i] + b4 * \epsilon[i] + b5 * \eta[i] + b6 * \lambda[i] + b7 * \phi[i] + u[group[i]]
}
##M Groups
for (j in 1:M) \{
u[j] \sim dnorm(0.0,\tau) \}
b0 \sim dnorm(0.0, 1.0E-6)
. . .
b7 \sim dnorm(0.0, 1.0E-6)
1/\tau \sim dgamma(0.001, 0.001)
### Estimation of the relation between insufficient knowledge and NBT for HIV (RR)
##ω~ dnorm(mu, percision)
\omega \sim \text{dnorm}(0.85237405, 6.7026589)
### Estimation of insufficient knowledge prevalence in the exposed and unexposed strata
```

```
\pi~ dbeta(24.20208, 56.47152)
```

```
ρ~ dbeta(29.38824, 166.53336)
```

Estimation of unknown bias correction factor

bias<-((1- π)+(exp(ω)*(π)))/((1- ρ)+(exp(ω)*(ρ)))

###Estimation of risk ratio uncorrected for confounding by insufficientknowledge about HIV transmission routes

RR<-exp(b1)

Estimation of risk ratio adjusted for insufficient knowledge about HIV transmission routes

RR.adj<-RR/bias

}

Specification of Initials

list(b0=0, b1=0, b2=0, b3=0, b4=0, b5=0, b6=0, b7=0, $\omega =0, \pi =0, \rho =0, \tau=1,$

u=c(0, 0, ..., 0))