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Abstract
Background: To apply a novel method to adjust for HIV knowledge as an unmeasured confounder for the effect of unsafe injection 
on future HIV testing. 
Methods: The data were collected from 601 HIV-negative persons who inject drugs (PWID) from a cohort in San Francisco. 
The panel-data generalized estimating equations (GEE) technique was used to estimate the adjusted risk ratio (RR) for the effect 
of unsafe injection on not being tested (NBT) for HIV. Expert opinion quantified the bias parameters to adjust for insufficient 
knowledge about HIV transmission as an unmeasured confounder using Bayesian bias analysis. 
Results: Expert opinion estimated that 2.5%–40.0% of PWID with unsafe injection had insufficient HIV knowledge; whereas 
1.0%–20.0% who practiced safe injection had insufficient knowledge. Experts also estimated the RR for the association between 
insufficient knowledge and NBT for HIV as 1.1-5.0. The RR estimate for the association between unsafe injection and NBT for HIV, 
adjusted for measured confounders, was 0.96 (95% confidence interval: 0.89,1.03). However, the RR estimate decreased to 0.82 
(95% credible interval: 0.64, 0.99) after adjusting for insufficient knowledge as an unmeasured confounder. 
Conclusion: Our Bayesian approach that uses expert opinion to adjust for unmeasured confounders revealed that PWID who 
practice unsafe injection are more likely to be tested for HIV – an association that was not seen by conventional analysis. 
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Introduction
Unsafe drug injection is a major risk factor for HIV and 
other blood-borne illnesses globally.1 In 2014, persons 
who inject drugs (PWID) accounted for 9% of new 
HIV diagnoses in the United States, corresponding to 
nearly 4000 individuals.2 Drug injection may promote 
HIV transmission through associated high-risk sexual 
behaviors3 and through unsafe injection, defined as re-
using or sharing needles/syringes.4

The first step in the HIV continuum of care, which 
measures the proportion of persons living with HIV 
who are diagnosed, requires high coverage and frequent 
HIV testing in populations at risk.5 The “test and treat” 
prevention strategy aims to reduce HIV transmission 

through retention and engagement in HIV care of those 
diagnosed with sustained viral suppression through 
antiretroviral treatment.6 The World Health Organization 
recommends at least annual HIV testing for PWID.7 

It has been previously shown that high-risk behavior 
among key populations may be associated with higher 
rates of HIV testing. However, these findings have been 
inconsistent in different high-risk populations, and the 
reason for this relationship is poorly understood.8 The 
decision to seek HIV testing among PWID depends on 
knowledge of the risk for HIV through unsafe injection8 
and testing coverage varies by age,9 gender, education, and 
marital status.10

We hypothesize that part of the controversy surrounding 
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the relation between unsafe injection among PWID 
and not being tested (NBT) for HIV may be explained 
by confounding variables as represented by the causal 
diagram11-13 in Figure 1. Several studies have identified 
confounders for the effect of unsafe injection on NBT 
for HIV, including male gender, lower education, and 
lower knowledge about HIV transmission by increasing 
the chance of unsafe injection and decreasing the chance 
of voluntary HIV testing.14,15 History of incarceration 
may also confound the causal pathway by increasing the 
risk of engaging in high-risk behaviors, and additionally, 
improving access to the health services provided in 
prisons.16

Confounding bias17 is an important threat to 
observational studies which can be reduced using 
restriction or matching in the design stage,11,18 or 
alternatively, by using stratification or adjustment at the 
analysis stage, provided that the confounding variables 
have been carefully measured and controlled. Any factors 
not conceived at the design stage or measured during data 
collection (hereafter called “unmeasured confounders”) 
make adjustment impossible in conventional analysis. 
This limitation to conventional frequentist analytic 
methods is a common critique of observational studies.19 
Indeed, virtually any observational study may be rightly 
or wrongly criticized for failure to adjust for unmeasured 
confounding. 

Several analytical methods are available to adjust for 
unmeasured confounding variables, including Bayesian 
methods.20 However, many of them have been rarely used 
in the epidemiological literature. This infrequent use of 
methods to deal with unmeasured confounding, including 
Bayesian bias analysis,21 is due to at least two factors. First, 
user-friendly statistical packages for such analyses are not 
yet available. Second, methods to measure priors and 
conduct Bayesian analysis have not been simplified for use 
by most applied public health researchers. 

Unsafe injection is the major risk factor for HIV 
transmission among PWID. Interventions to mitigate 
unsafe injection and associated harms mainly focus on 
reducing the frequency of unsafe injection by needle 
exchange programs.3 Those who continuously have 
unsafe injection should be tested more frequently so that 
they are diagnosed in a timely manner to prevent further 
HIV transmission. Timely HIV testing, diagnosis and 
treatment, such as test and treat strategy,5 have been shown 
to reduce HIV transmission in PWID communities. 
Increasing knowledge about HIV transmission, testing 
and preventions may play such a role in increasing HIV 
testing. 

In this paper, using empirical data from an ongoing 
prospective study of young adult PWID in San 
Francisco,22,23 we provide a simple case study to illustrate 
how to collect and summarize prior bias information. 
The causal question of interest is to estimate the 3-month 

likelihood of not receiving an HIV test, if all PWID were 
low-risk drug injectors, compared with the 3-month 
likelihood of not receiving an HIV test if all PWID were 
unsafe drug injectors. We used Bayesian methods to adjust 
for a hypothetical unmeasured confounder, in this case 
insufficient knowledge about HIV transmission. The 
analysis methodology developed for this case study can be 
used in other studies with few modifications. 

Materials and Methods
Data Source: The U-Find-Out (UFO) Study
To assess the association between unsafe injection and 
NBT for HIV, we used data from the UFO Study, an 
ongoing longitudinal cohort of hepatitis C virus (HCV) 
uninfected young adult PWID who were under age 30 at 
recruitment in San Francisco, California, and established 
in 2000.22,23 The study procedures, briefly described below, 
can be found in detail in prior publications.23

Participants
Young adult PWID recruited by community-based 
outreach were interviewed for demographic characteristics, 
drug injection history and sexual risk at enrollment at 
follow-up visits (for the 3-month period preceding the 
visit), and tested for HCV infection at enrollment and 
among negatives at follow-up visits which were scheduled 
quarterly.  HIV testing is offered at each visit, but it not 
required. Pre- and post-risk-based counseling accompanies 
both HCV and HIV testing. We analyzed data from 601 
HCV/HIV-negative PWID with at least one follow-up 
visit.

Variable Definitions
At each visit, a trained interviewer asked about recent 
HIV testing and injection behavior in the previous three 
months. We categorized PWID into unsafe injectors and 
low-risk injectors. PWID who shared, reused, or borrowed 
previously used drug-preparation equipment in the three 
months before the interview were defined as unsafe 
injectors.

Measured confounders included sex (male, female, 
transgender), age, education, having been incarcerated 
and ever having tested for HIV at the time of baseline 
interview. In our external bias adjustment, we considered 
insufficient knowledge about HIV transmission routes as 
the potential unmeasured confounder. The insufficient 
HIV knowledge is clearly a confounder in our setting as 
it positively affects both unsafe injection and NBT. In 
other words, insufficient HIV knowledge is a common 
cause of the exposure and outcome and so, it is a causal 
or classical confounder.24,25 The causal diagram in Figure 1 
represents the causal relationship between variables within 
the population in two successive visits.

We defined insufficient knowledge about HIV 
transmission as not knowing the following forms of 
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prevention: consistent use of condom, having only one 
uninfected faithful partner and not sharing syringe/needle, 
and additionally, not rejecting two misconceptions: (i) 
knowing that healthy looking persons can be HIV positive; 
and (ii) knowing that HIV cannot be transmitted from 
sharing food or mosquito bites.26,27

Conventional Analysis
Since each PWID may have had more than one visit 
during the study period, we applied a generalized 
estimating equations (GEE) methodology to assess the 
association between unsafe injection and NBT for HIV, 
after adjusting for measured confounders. PWID were 
censored at the first visit in which they reported having 
been HIV tested and seroconverted or self-reported HIV-
positive, and otherwise were followed up to the last visit 
that HIV testing data were available. We considered 
unsafe injection with one interval lag (three months) 
as the main exposure prior to the measurement of the 
outcome variable (reporting having had an HIV test). 
Therefore, for every visit, the effect of unsafe injection in 
the previous visit was assessed on NBT for HIV history 
measured at that visit. In other words, we assigned one 
visit lag interval between the exposure at visit t and the 
outcome at visit t+1. Since each participant had more 
than one measurement of the outcome, we used GEE 
with Poisson distribution, logarithmic link function, and 
cluster robust standard errors to estimate the Risk Ratio 
(RR) and 95% confidence interval (CI). For this analysis, 
we used the Xtgee command in Stata software version 14.0 
(StataCorp, College Station, TX, USA). For comparison, 
we also repeated the analysis using a random-effect Poisson 
regression analysis using Xtpoisson command in Stata. 

Bias Analysis: Prior Values and Distributions
To account for insufficient knowledge about HIV 
transmission routes as the unmeasured confounder, we 
used a Bayesian bias analysis.19,20,28-31 We used expert 
opinion to derive prior probability distributions for 
three bias parameters that characterize the magnitude 

Figure 1. Causal Diagram for the Hypothesized Relationship Between E 
(Unsafe Injection), D (NBT for HIV), L (Measured Confounders Including 
Age, Gender, Education, History of Imprisonment at Baseline and 3-Month 
Follow-Up and Ever Tested for HIV at Baseline), and U (Unmeasured 
Confounder Insufficient Knowledge). t, denotes month.

and direction of unmeasured confounding.21 That is, we 
approached two experts with expertise in the epidemiology 
of HIV and drug use/injection in San Francisco to give us 
95% prior intervals for the following bias parameters; see 
the questionnaire in the Supplementary file 1:
a) Proportion of young adult PWID with insufficient 

HIV knowledge among unsafe injectors (P1) 
b) Proportion of young adult PWID with insufficient of 

HIV knowledge among low-risk injectors (P0)
c) RR for the association between insufficient HIV 

knowledge and NBT for HIV among PWID who 
practice unsafe injection (RRUY)

We then assigned prior probability distributions to 
each of the bias parameters based on the prior intervals 
suggested by the experts; beta distributions were used for 
the two proportions in P1 and P0, and normal distribution 
for the logarithm of RRUY.

21

The beta distribution was used for the bias parameters 
P1 and P0 as it is a conjugate prior for the Bernoulli 
distribution: considering a Bernoulli distribution for the 
data, which is natural for binary variables like insufficient 
knowledge, and a beta distribution as the prior for the 
proportions (like P1 and P0), the posterior will also be a 
beta distribution. For beta distribution used for P1 and P0, 
we selected alpha and beta values so that the percentile 
2.5 and 97.5 of beta distribution exactly match the 95% 
prior intervals of the experts using a grid search. For 
normal distribution considered for ln(RRUY), the mean 
was calculated by averaging the logarithm of upper and 
lower prior limits, and standard deviation was computed 
by subtracting logarithm of lower limit from logarithm of 
upper limit and then dividing by 3.92. 

Bayesian Bias Analysis for Unmeasured Confounding
Markov chain Monte Carlo (MCMC) using Gibbs 
sampling was used to sample from the posterior distribution. 
In each MCMC iteration, the posterior RR for exposure, 
adjusted for measured confounders, was estimated. A 
Gaussian random-effect Poisson model was used to assess 
the effect of unsafe injection on NBT for HIV adjusted 
for measured confounders. We assigned an uninformative 
normal distribution, with mean and variance equal to zero 
and 106 respectively, for the regression coefficients for the 
exposure variable and other covariates in the model for 
NBT for HIV. The Gaussian random effects were assigned 
a normal distribution with mean zero and variance equal 
to τ, where 1/τ was assigned a gamma (0.001, 0.001) 
distribution. The inverse-gamma distribution is frequently 
used for variance parameter as it is conditionally conjugate 
in the sense that if variance has an inverse-gamma prior 
distribution, then the conditional posterior distribution is 
also inverse-gamma.32 In the next step, a sample was drawn 
using beta and normal distributions of bias parameters  
and to estimate the bias correction factor, and adjusted 
RR for insufficient knowledge about HIV transmission 
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routes was derived from unadjusted RR (adjusted only for 
measured confounders) divided by bias correction factor20:

Bias correction factor = RRUYP1 + (1 − P1)
RRUYP0 + (1 − P0) 

Adjusted RR = Unadjusted RR
Bias correction factor 

 The models converged after 4000 iterations with 1000 
iterations of burn-in, and convergence was assessed using 
the Monte Carlo standard error. After convergence was 
achieved, we ran the simulation until the Monte Carlo 
error for adjusted RR became less than 5% of the sample 
standard deviation. This occurred at 10 000 iterations.33

We used WinBUGS (version 1.4) for the bias analysis, and 
the WinBUGS computer code is given in Supplementary 
file 2. We reported the RR with 95% posterior credible 
interval (median and 2.5th and 97.5th percentiles of 
posterior distribution) using the two experts’ 95% prior 
intervals separately. 

Results
Our analytical sample included 601 persons with an 
average of 4.3 visits (SD = 7.7). At the baseline visit, 
nearly two-thirds (65.9%) reported unsafe injecting 
in the previous three months and only two individuals 
did not answer this question. The frequency of unsafe 
injection was significantly higher in women than in men 
(75.0% vs. 61.4%, P = 0.003). Unsafe injection did not 
significantly vary by the other baseline covariates (history 
of incarceration, lower education, and ever tested for 
HIV). The mean (SD) age was approximately 23.6 (3.4) 
years, regardless of injection behavior (Table 1).

Table 2 shows the distribution of the three bias 
parameters based on the opinion of two experts. The 
experts estimated that the proportion of PWID with 
insufficient knowledge was between 2.5% and 40.0% 
among unsafe injectors, and between 1.0% and 20.0% 
among low-risk injectors. Accordingly, for expert 1, we 
assigned a beta (8.65, 149.42) prior to parameter ‘a’, and 
a beta (5.12, 166.35) prior to parameter ‘b’, which yield 
suitable 95% prior probability credible intervals for the 
proportions based on the first expert opinion. In contrast, 
expert 2 held more extreme views about the magnitude 
of unmeasured confounding. The characteristics of the 
beta distribution that were assigned are shown in Table 2. 
Additionally, the lower bound for the RR of the association 
between insufficient knowledge and NBT for HIV was 
estimated as 1.1 by both experts and the upper bound 
that was either 2.2 or 5.0. The corresponding normal 
distributions are presented in Table 2.

The results of the analyses are given in Table 3. The RR 
for the association between unsafe injecting and NBT for 
HIV, adjusted for measured confounders (age, gender, 
education, history of imprisonment at baseline and in 
3-month follow up and reporting ever testing for HIV at 

Table 1. Baseline Characteristics of People Who Inject Drugs by their 
Injection Risk Behavior, UFO study, San Francisco

Characteristics
No Recent Unsafe 

Injection; 
n = 204 (%)

With Recent 
Unsafe Injection; 

n = 395 (%)
P Value*

Gender

Male 151 (38.62) 240 (61.38)

0.003Female 51 (25) 153 (75)

Transgender 2 (50) 2 (50)

Any history of incarceration

No 148 (34.66) 279 (65.34)
0.47

Yes 52 (31.52) 113 (68.48)

Education

Less than high school 74 (32.17) 156 (67.83)
0.43

High school and up 129 (35.34) 236 (64.66)

Ever tested for HIV

Yes 60 (35.29) 110 (64.71)
0.67

No 141 (33.49) 280 (66.51)

Age; mean (SD) 23.8 (3.2) 23.5 (3.5) 0.21

SD, standard deviation.
*P values were driven from chi square test except for age that was driven from 
independent t test.

baseline) was 0.96 (95%CI, 0.89–1.03). After adjusting 
for the unmeasured confounder, insufficient HIV 
knowledge, the RR between unsafe injection and NBT 
for HIV (adjusted for both measured and unmeasured 
confounders) decreased to 0.95 (95% credible interval, 
0.84–1.08) in the first bias analysis and 0.82 (95% 
credible interval, 0.64–0.99) in the second bias analyses. 
In other words, the bias analysis revealed that PWID who 
are practicing unsafe injection are more likely to be tested 
for HIV. 

Discussion
We found that if the insufficient HIV knowledge was 
considered as an unmeasured confounder, then PWID 
who practice unsafe injection are more likely to be tested 
for HIV – an association that was not seen by conventional 
analysis. The approach can be used as a post-hoc correction 
when experts, peer-reviewers, or other emerging data 
deem that biases are possible or likely, as in the present 
case.10 The negative effect of unsafe injection on NBT 
can be explained by the notion that people with unsafe 
injection are more reactive to receiving knowledge about 
the transmission routes of HIV which in turn encourages 
them to refer more for HIV testing. In this sense, the 
unmeasured variable HIV knowledge mediates the effect 
of unsafe injection on NBT. In fact, depending on its 
measurement time (before or after the unsafe injection), 
HIV knowledge can act as a mediator or confounder. 
Our results indicated that adjustment for unmeasured 
insufficient HIV knowledge intensifies the relation 
between exposure and outcome. In fact, the relation 
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between exposure and outcome through the confounder 
is positive, a positive multiplied by a positive is positive, 
but the effect estimate of the exposure is negative (adjusted 
RR = 0.95 and 0.82 based on inputs of expert 1 and 2). 
So, we expect the unadjusted RR, which involves some 
cancellation of these two relationships, will be closer to the 
null than the adjusted one.34

To better understand how Bayesian bias analysis for 
unmeasured confounding works, we can plug the typical 
values, arithmetic mean of prior limits for P1 and P0 and 
geometric mean of prior limits for RRUY, provided by 
expert 1 in the bias correction factor and then obtain the 
adjusted RR. Based on Table 2, 

 P1 =
0.2+0.4

2 = 0.3, P0 =
0.1+0.2

2 = 0.15, and RR = √1.1 ∗ 5 = 2.35;  

 so, bias correction factor = (2.35∗0.3)+0.7
(2.35∗0.15)+0.85 = 1.17     and adjusted 

RR = 0.96
1.17 = 0.82 which is the same point estimate we 

obtained from Bayesian bias analysis (Table 3). 
Since the outcome of interest “NBT for HIV” was 

not a rare event, we calculated the RR. Estimating odds 
ratio when the outcome is not a rare event may result in 
misinterpretation, i.e. odds ratio exaggerates the results 
compared with RR and it suffers from non-collapsibility.35-38 
The GEE method estimates the marginal effect, whereas 

Table 2. Expert Opinions About the Three Bias Parameters and the Assigned Distributions

Bias Parameters
95% Prior Interval (by Expert Opinion) Prior Distributions

Expert 1 Expert 2 Expert 1 Expert 2

a) Proportion of young adult PWID with insufficient HIV 
knowledge among unsafe injectors

2.5%–9.5% 20%–40%
Beta distribution

(α = 8.65, β = 149.42)
Beta distribution

(α = 23.11, β = 55.21)

b) Proportion of young adult PWID with insufficient HIV 
knowledge among low-risk injectors

1%–6% 10%–20%
Beta distribution

(α = 5.12, β = 166.35)
Beta distribution

(α = 27.83, β = 162.15)

c) Risk Ratio of the association between insufficient HIV 
knowledge and NBT for HIV among low-risk injectors

1.1–2.2 1.1–5
Normal distribution
(µ = 0.44, σ = 0.18)

Normal distribution
(µ = 0.85, σ = 0.39)

Table 3. Risk Ratio Between Unsafe Injection and NBT for HIV after Adjusting 
for Measured and Unmeasured Confounders

Risk Ratio
95% Confidence/
Credible Interval

Unsafe injection 0.96a 0.89–1.03b

Adjusted unsafe injection
Bias analysis 1 (expert 1)

0.95c 0.84–1.08d

Adjusted unsafe injection
Bias analysis 2 (expert 2)

0.82e 0.64–0.99d

a Risk Ratio adjusted for the measured confounders (age, gender, education, 
history of imprisonment at baseline and 3-month follow-up and ever tested 
for HIV at baseline).
b 95% Confidence Interval.
c Risk Ratio adjusted for measured confounders (age, gender, education, 
history of imprisonment at baseline and 3-month follow-up and ever tested 
for HIV at baseline) and unmeasured confounder (insufficient knowledge) 
based on the first expert’s priors.
d 95% Credible Interval.
e Risk Ratio adjusted for measured confounders (age, gender, education, 
history of imprisonment at baseline and 3-month follow-up and ever tested 
for HIV at baseline) and unmeasured confounder (insufficient knowledge) 
based on the second expert’s priors.

the random-effect Poisson model used in the Bayesian 
analysis estimates the conditional effects (conditional 
on the cluster-specific random term). We performed the 
conventional random-effect Poisson regression analysis 
using both Stata and WinBUGS (without considering the 
unmeasured confounder, and with uninformative priors 
for beta coefficients) and obtained the same results of GEE 
which is not surprising given the collapsibility of RR.35 

Although Bayesian analysis can be done by just one set of 
priors that derives from expert opinion,20 overconfidence 
of experts is an important issue and can affect the analysis 
results and conclusion.39 Because the parameters for 
unmeasured confounding are not identifiable using 
data, the results strongly depend on the choice of prior 
distribution. For example, the prior distributions for the 
prevalence of unmeasured confounder among exposed and 
unexposed suggested by two experts were very different 
and did not even overlap with each other. It means that at 
least one of the priors is wrong. To overcome this problem, 
it is better not to rely on only one or two experts. Instead, 
researchers should ideally collect data from several experts 
(and/or through a comprehensive review of the literature 
if it exists) and synthesize the results to reach a unique set 
of priors.21

The results from the two bias analyses based on the first 
and second expert opinions were different. The difference 
was due to the differences in the prior distributions 
provided by the two experts. In particular, the priors of the 
expert 1 seem to suffer from overconfident (overly precise) 
bias,40 strongly suggesting that the bias parameters (P1, P0, 
RRUY) are small and so insufficient HIV knowledge is a 
very weak confounder.

Our study has some limitations other than using only 
two experts. First, we use self-reported data on exposure, 
outcome and measured confounders. Although most 
behavioral surveys rely on self-reported measures of risk 
behaviors, they are prone to recall and social desirability 
biases.41-43 Second, we only looked at one unmeasured 
confounder and there might be other individual and 
population-level confounders for NBT for HIV that we 
did not assess. For example, no information was available 
about a history of mental illness or unstable housing (e.g. 
homelessness), and both these factors have been shown 
to impact access to HIV care.44 However, adjusting for 
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several correlated unmeasured confounders requires strong 
untestable modelling assumptions, and is an ongoing area 
of statistical research.45

The best way to deal with unmeasured confounding 
is to measure and adjust for all important confounders. 
In the present study, however, unsafe injection is a time-
varying exposure and insufficient knowledge about HIV 
transmission routes is indeed a time-varying confounder 
(as presented in Figure 1). Moreover, there may be feedback 
between unsafe injection and insufficient knowledge (i.e., 
they may affect one another). Consequently, insufficient 
knowledge about HIV transmission routes may be a time-
varying confounder affected by the previous exposure, 
and causal methods are required to support a valid 
analysis.39,46-55

In addition to the bias analysis method we used to 
address unmeasured confounding, our study emphasizes 
the importance of sufficient HIV knowledge about 
HIV transmission routes on NBT for HIV in PWID. 
Interventions to increase the knowledge of PWID and 
other high-risk populations may increase the HIV testing 
rate and the chance of early HIV diagnosis.

In conclusion, Bayesian bias analysis for unmeasured 
confounding adjustment can be accomplished using 
a set of priors derived from the expert opinion and 
translating them to the bias parameters for estimating the 
bias correction factor. The adjusted RR for unmeasured 
confounder equals unadjusted RR divided by bias 
correction factor. Our Bayesian approach that uses expert 
opinion to adjust for unmeasured confounders revealed 
that PWID who practice unsafe injection are more likely 
to be tested for HIV – an association that was not seen by 
conventional analysis. 
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